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The Effects of Aquatic Invasive Species on Property Values: Evidence from a Quasi-
Random Experiment 

 
 
Abstract: This study uses hedonic analysis to estimate the effects of a common aquatic invasive 

species – Eurasian Watermilfoil (milfoil) – on property values across an extensive system of over 

170 lakes in the northern forest region of Wisconsin.  Since milfoil is inadvertently spread by 

recreational boaters, and since boaters are more likely to visit attractive lakes, variables 

indicating the presence of milfoil are endogenous in a hedonic model.  Using an identification 

strategy based on a spatial difference-in-differences specification, results indicate that lakes 

invaded with milfoil experienced an average 13% decrease in land values after invasion. 

 

JEL Codes: Q24, Q51, Q57 

Keywords: invasive species, hedonic, spatial model, difference-in-differences, Eurasian 

watermilfoil, Myriophyllum spicatum, lakes. 
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The Effects of Aquatic Invasive Species on Property Values: Evidence from a Quasi-
Random Experiment 

 
I. INTRODUCTION 

The invasion of ecosystems by non-native species is considered to be second only to 

habitat loss as the greatest threat to biological diversity (Wilcove et al. 1998).  Freshwater rivers 

and lakes have been particularly susceptible to species invasions, and have recently attracted the 

attention of large environmental regulatory bodies.1  Invasive species can i) alter ecological 

communities by competing or preying on native species, ii) affect market-related enterprises 

such as agriculture, forestry, fisheries, and electric power production, and iii) affect non-market 

resources such as recreational fisheries.  Despite significant advances in understanding the 

ecology of invasive species, the economic costs of invasive species are not generally understood 

(Lovell and Stone 2006). The most commonly cited estimate of the costs of invasive species for 

the United States is $120 billion per year (Pimentel, Zuniga, and Morrison 2005), which is 

derived from estimates of the costs of managing species invasions, including the amount that 

must be spent to repair infrastructure damage.   However, such cost estimates tend to be more 

anecdotal and not based on empirical methods grounded in economic theory (Lovell and Stone 

2006).  Developing a greater understanding of the relationship between invasive species and 

welfare is central to understanding the appropriate role of public policy.   

The purpose of this study is to estimate a hedonic model of lakeshore property values to 

quantify the effects of a common aquatic invasive species – Eurasian watermilfoil 

(Myriophyllum spicatum, hereafter labeled milfoil) – on property values across an extensive 

system of over 170 lakes in the northern forest region of Wisconsin.  Milfoil has been labeled as 

“among the most troublesome submersed aquatic plants in North America” (Smith and Barko 

1990, p. 55), and is characterized by dense stands that i) block sunlight and limit the ability of 
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native plant species to grow, ii) affect fisheries by inhibiting the ability of larger fish to prey on 

smaller ones, iii) limit recreational activities such as swimming and boating, and iv) provide 

good habitat for mosquitoes. Once established, the presence of milfoil is quasi-irreversible, as the 

plant is extremely difficult to remove without clearing native vegetation.  The data used for 

estimation covers more than 1,800 lakeshore property transactions across 172 lakes within a 

single county in the northern forest region of Wisconsin.  The sheer variation in lakes within one 

land market makes this dataset particularly unique for hedonic analyses of water-based 

amenities.  Further, the dataset covers a period (1997-2006) that coincides with multiple lakes 

becoming invaded with milfoil.  Hedonic results presented in this paper provide unique evidence 

regarding the effects of aquatic invasive species on property values, and thus, should prove 

useful in designing efficient strategies to manage species invasions.   

In addition to providing evidence on the costs of species invasions, the analysis in this 

paper provides a general contribution by designing a quasi-random experiment to identify the 

effects of changes in an endogenous neighborhood amenity on property values.  The 

methodology is based on a spatial difference-in-differences specification, and simultaneously 

accounts for both bias and inefficiency problems associated with spatially-correlated unobserved 

neighborhood effects.  Although typically treated as an efficiency issue in econometric 

estimation, unobserved (or unmeasured) neighborhood effects can be correlated with measurable 

neighborhood environmental amenities (Small 1975), resulting in biased estimates of such 

amenities in hedonic estimation.  One example of correlated neighborhood effects in hedonic 

applications is the observation that sources of water pollution, in addition to emitting undesirable 

pollution, are also likely to be unpleasant neighbors (Leggett and Bockstael 2000).  A second 

example derives from the observation that the negative property price effects of being located in 
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a flood plain can be confounded by the amenity effects of being located close to streams and 

lakes (Bin and Polasky 2004; Pope 2008).   

The problem of unobserved neighborhood effects arises in the present application 

because the property values associated with multiple parcels on the same lake are influenced by 

the same unobserved lake-specific characteristics.  For example, fishing quality and the scenic 

views of the surrounding landscape affect property values and will be spatially correlated within 

a lake, yet are difficult to measure.  In addition to well-known efficiency issues, the presence of 

such spatially-correlated unobservables calls into question the exogeneity of variables aimed at 

measuring the presence and abundance of milfoil on a lake.  Many of the most problematic 

aquatic invasive species – including milfoil, zebra mussels, rainbow smelt, rusty crayfish, and 

spiny water flea – are spread from lake to lake by the movement of recreational boaters and 

anglers (Vander Zanden et al. 2004), creating a direct link between the spread of the invasive and 

the recreation decisions of boaters.2 Since boaters are more likely to visit popular lakes with 

desirable amenities, and since many of these amenities are difficult to quantify and are therefore 

unobservable to the analyst, the likelihood that any particular lake is invaded will be correlated 

with the error term in a hedonic property value model.  Thus, conventional OLS estimation of 

cross-sectional hedonic data will likely produce positively biased coefficient estimates on 

variables indicating a lake’s milfoil status.3  To support this claim, we present results from a 

cross-sectional hedonic analysis that suggest an increase in property values arising from milfoil 

invasions.   

Our strategy for identifying the effects of milfoil invasions on property values is based on 

a difference-in-differences analysis specified with fixed neighborhood effects.  The difference-

in-differences analysis is based on a relatively long time-series consisting of ten years of 
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property transactions that include observations on lakes before and after milfoil invasions.  The 

fixed neighborhood effects specification exploits the panel structure of the data, where each lake 

is defined as a natural neighborhood, or cluster.  Identification of the effects of milfoil on 

property values is achieved because the fixed effects control for all observable and unobservable 

lake (neighborhood) amenities that affect property values, while the difference-in-differences 

specification exploits the natural experiment inherent in the before-and-after nature of milfoil 

invasions present in the dataset. Further, the clustering of properties by lake allows us to estimate 

cluster-robust standard errors, which ensures that inference is robust to any form of spatial 

correlation across properties within lakes.  Results indicate that a milfoil invasion reduces 

average property values by approximately 8%, and reduces average land values net of the value 

of any structure by approximately 13%.  Since a time-series dataset is necessary for our 

identification strategy, we demonstrate that our results are robust to handling the temporal 

aspects of the data with either time-specific dummy variables or a simple time trend in either 

linear or non-linear forms. 

The paper is organized as follows. Section 2 places the present work in the larger context 

of estimating the effects of spatial amenities in hedonic models, and argues for the general 

applicability of our approach. Section 3 provides background information on milfoil, while 

section 4 presents the application and the data used for estimation. Sections 5 and 6 presents 

estimation results while concluding thoughts are offered in section 7. 

II. ESTIMATING THE EFFECTS OF NEIGHBORHOOD AMENITIES IN HEDONIC 

MODELS 

 Hedonic modeling is one of the most widespread techniques used to estimate the 

economic value of non-market amenities to individuals. The theoretical foundation of hedonic 
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modeling is elegantly laid out by Rosen (1974) and provides the conceptual basis for estimating 

landowners’ revealed preference for the neighborhood amenities surrounding their land.  Despite 

the well-understood theoretical foundation underlying hedonic modeling, empirical application 

of the method forces researchers to grapple with a number of well-known econometric 

challenges, such as an arbitrary choice of functional form, defining the spatial and temporal 

extent of land markets, heteroskedasticity, and multicollinearity. While a perusal of the hedonic 

literature suggests that issues associated with unobserved neighborhood effects are a recent 

concern, the issue was originally broached by Small (1975), who questioned whether unobserved 

neighborhood effects would substantially bias hedonic estimates of air quality.   

As argued by Chay and Greenstone (2005), the problem of omitted variable bias, such as 

induced by correlation between unobserved neighborhood effects and observable environmental 

amenities, has received little attention in the hedonic literature.  The recent literature treats the 

estimation problems associated with unobserved neighborhood characteristics primarily as an 

inefficiency problem, induced by spatial correlation in the error terms of hedonic models.4  

While models of spatial autocorrelation are well-established and can be readily estimated (e.g. 

see Anselin and Bera 1998) to correct for correlation in the error terms, such approaches still 

assume no correlation between the observed and unobserved neighborhood effects, and thus fail 

to address Small’s (1975) original critique. 

One approach to dealing with the correlation between observed and unobserved 

neighborhood characteristics is to include additional variables measuring neighborhood 

characteristics directly in the hedonic model (e.g. Leggett and Bockstael 2000). A second 

approach to handling correlation between observed and unobserved neighborhood characteristics 

is to instrument for the environmental amenity of interest.  For example, Chay and Greenstone 
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(2005) use exogenous changes to federal air pollution control policy to instrument for air quality 

in a national analysis with aggregate county-data, while Irwin (2002) uses measures of the soil 

quality of neighboring parcels to instrument for endogenous variables measuring the amount of 

open space within a particular parcel’s neighborhood.  However, as described by Irwin (2002), 

“while the IV estimation controls for the bias introduced by the endogenous variables and 

unobserved spatial correlation, it does not correct for the inefficiency of the estimates caused by 

the remaining spatial error correlation” (p. 473).  In an attempt to rectify this problem, Irwin 

randomly draws a subset of her data and drops all nearest neighbors, essentially eliminating the 

potential for spatial autocorrelation.  Unfortunately, this approach loses information and Irwin 

concludes that her estimates lack robustness and calls for additional research on the identification 

issue that arises from unobserved neighborhood effects.   

A quasi-experimental approach to handling correlation between observed and unobserved 

neighborhood effects is difference-in-differences analysis.  Difference-in-differences analysis 

can be used to exploit before-and-after effects of changes in neighborhood amenities for 

identification.  Examples of difference-in-differences hedonic models include analyses of 

supportive housing (Galster, Tatian, and Pettit 2004), hurricanes (Hallstrom and Smith 2005), 

and the effects of new sports stadiums (Tu 2005) on property values.  While the above 

difference-in-differences models account for the inefficiency problems associated with spatially 

correlated errors, they also assume no correlation between the unobserved neighborhood effects 

and the change in neighborhood amenities.5  In the language of the treatment evaluation 

literature (e.g. see Ch. 25 in Cameron and Trivedi (2005)), the assumption is one of “selection on 

observables”, whereby the “treatment” is the change in neighborhood amenities, and selection 

into the “treatment” is based on observable factors that can be controlled for econometrically.   
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The approach taken in this paper defines a fixed time-invariant neighborhood effect to 

control for all neighborhood characteristics that do not change over the time period of the dataset 

(ten years in this application). As such, the model is only capable of separately estimating the 

effects of individual neighborhood characteristics that vary over the time period of the dataset, as 

the effects of all time-invariant neighborhood characteristics (e.g. lake size) will be accounted for 

by the fixed effects.  Given the change in milfoil status on multiple lakes in the sample, the 

spatial difference-in-differences specification estimates how the premium between a milfoil lake 

and a non-milfoil lake changes due to the invasion.  Since milfoil is more likely to spread on 

popular recreational lakes with attractive unobserved neighborhood effects, the fixed 

neighborhood effect specification controls for spatial correlation that would otherwise plague the 

estimated covariance matrix, and relaxes the assumption that variables measuring a lake’s milfoil 

status are uncorrelated with the unobserved neighborhood effects.  Again adopting the language 

of the treatment evaluation literature, our approach produces consistent estimates of the price 

effects of milfoil even when a milfoil invasion on a lake is subject to “selection on 

unobservables”, provided that the unobservables are controlled with the fixed neighborhood 

effects.  

III. EURASIAN WATERMILFOIL 

Eurasian Watermilfoil (milfoil) is a submersed plant that is native to Europe, Asia, and 

North Africa.  Milfoil was first discovered in the United States in the late 19th century and is now 

known to exist in at least 45 states. The invasion of a lake by milfoil has four effects that are 

particularly relevant for property values.  First, the species has the ability to rapidly cover a water 

body with vegetation, potentially reducing the quality of many types of recreation (e.g. 

swimming, boating, fishing, etc.).  Second, the presence of milfoil in a lake is generally thought 
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to be quasi-irreversible (Smith and Barko 1990).  Third, the increase in submerged biomass from 

a milfoil infestation can accelerate eutrophication (Carpenter 1980).  Fourth, the ability of milfoil 

to rapidly cover large portions of lakes is highly uncertain and difficult to predict (Smith and 

Barko 1990).   

Milfoil is an opportunistic species that thrives in many different environments and 

primarily reproduces through fragmentation, a characteristic that greatly drives the spread of the 

species through the movement of boaters.  The time-growth relationship for milfoil has shown 

significant variability in the different bodies of water that have been invaded – e.g. see Smith and 

Barko (1990) for an extended discussion of the ecology of milfoil. One of the first places to 

become infested with milfoil, Chesapeake Bay, showed few signs of the species for over sixty 

years.  However, its abundance roughly doubled between 1960 and 1961 to cover 100,000 acres 

across the bay (Orth and Moore 1984). In other cases, milfoil populations have taken little time 

to take over their host body of water.  While there is considerable uncertainty regarding the 

ability of milfoil to become a nuisance in particular types of water bodies, in general, it is 

believed that the species prefers highly disturbed lake beds and lakes receiving nitrogen and 

phosphorous-laden runoff.  Higher water temperatures promote multiple periods of flowering 

and fragmentation, and it appears that milfoil is a particular problem in nutrient-rich lakes.   

Given the uncertainty associated with predicting the growth rate of milfoil across similar 

types of water bodies, and the quasi-irreversibility associated with a milfoil invasion, its mere 

presence in a lake is a chief concern to many individuals, as opposed to the degree of milfoil 

abundance at any particular point in time.  Therefore, since property prices capitalize current and 

expected future levels of environmental quality, even a lake with relatively low levels of milfoil 
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may experience a negative price premium due to the quasi-irreversibility of its invasion, and the 

uncertainty associated with how milfoil populations may change over time.   

IV. HEDONIC APPLICATION 

  This study focuses on the property price effects of milfoil on lakes within Vilas County, 

Wisconsin (Figure 1).  Vilas County is located in the northern forest region of Wisconsin and is 

widely considered to have the highest concentration of freshwater lakes in the world.  This 

region is mostly forested and its rural economy is heavily influenced by the preponderance of 

second homes located along the shorelines of the region’s many lakes.   

Data and Variables Used in Estimation 

The data used for this study were compiled from a variety of sources.  Data on arms-

length lakefront property transactions were collected from the Wisconsin State Bureau of 

Revenue for the years of 1997-2006.  Assessed structural values were taken from annual tax 

rolls, obtained from the Vilas County Information Technology Department.6  GIS tax parcel and 

county-wide spatial water data were obtained from the Vilas County Mapping Department.7  

Lake characteristics and ecological variables were collected from the Wisconsin Department of 

Natural Resources (DNR)8 and the Environmental Remote Sensing Center at the University of 

Wisconsin, Madison.  Data on the presence of milfoil and the year of milfoil invasion were 

gathered from the Wisconsin DNR’s website.9  Data on fisheries quality were gathered from the 

Wisconsin DNR and a widely read guidebook of fishing quality in northern Wisconsin 

(Sportsman’s Connection 2002).10  Milfoil abundance data were compiled with the help of staff 

at the Wisconsin DNR and other contracting firms.11  The entire panel of data represents 

transactions on 172 lakes in Vilas County 
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The literature does not provide concrete guidance on the selection of variables or 

functional form in hedonic models, although in general, property prices are determined by their 

structural and lot characteristics, neighborhood characteristics, and spatial attributes.  The 

dependent variable in all models is the observed arms-length transaction price of the property 

deflated with the consumer price index (2006 dollars). Table 1 presents a comprehensive list of 

the independent variables included. Structural and lot characteristics include assessed structure 

value (Structure), the size of the lot (Lot size), shoreline frontage (Frontage), and frontage-

squared (Frontage2).  Due to data limitations, the value of characteristics associated with a 

property’s housing structure are lumped into an assessed structural value.  All structural and lot 

variables are expected to make positive contributions to the dependent variable.   

In an attempt to alleviate omitted variable bias, we include many lake-specific variables 

to account for observable variation in lake characteristics: Lake area, Water clarity, and Max 

depth.  Fishing quality variables included (Muskie, Pike, Walleye, Bass, and Panfish) are based 

on species-specific rankings determined by the Wisconsin DNR.  The ratings for Muskie – 

muskellunge (or muskie) are the premiere sport fish in this region – range from 0 to 4 and are 

based on angler surveys and observations made by biologists.12 Also included are two dummy 

variables accounting for the presence/absence of a lake association (Assoc) and the possibility of 

public access through a boat ramp (Access).  Since many households prefer to locate on a 

relatively pristine lake with significant amounts of open space (Spalatro and Provencher 2001), 

we include a variable measuring the number of private parcels along a lake’s shoreline divided 

by the size of the lake (Parcel density),13 and the minimum frontage zoning regulation of the 

lake (Zone).  Distance and distance2 are variables that measure the distance (in miles) to either 

Eagle River or Minocqua to proxy for convenience of the property to services.  



 12

Milfoil Variables Used in Estimation 

There are 17 lakes in the dataset that have been invaded by milfoil.14  Eight out of the 

seventeen lakes were invaded during the period 1992-1995, while the other nine lakes were 

invaded during 2000-2005.  Recent invasions have been a primary concern of lakefront property 

owners in this region, as residents are concerned about the potential for milfoil to adversely 

affect the recreational opportunities on their lakes.15  Despite the concerns of local residents, the 

average sales price of a property on a lake with Milfoil was about $15,000 above the average 

sales price on a lake without milfoil during the period 1997-2006, suggesting that lakes with a 

price premium (i.e. popular lakes) may also be more likely to be invaded with milfoil. 

We account for the presence/abundance of milfoil with several different combinations of 

the milfoil measures—a continuous relative frequency measure (Milfoil_freq), two dummy 

variables based off relative frequency, and a presence/absence dummy variable.  The continuous 

variable is the relative frequency of milfoil lake-wide.  The dummies are grouped into categories 

based on the continuous variable, providing low (Milfoil_low) and high (Milfoil_high) abundance 

categories.  Unfortunately, the Wisconsin DNR and other organizations that do lake surveys only 

began a state-wide sampling of lakes believed to be infested with milfoil in 2005.  Consequently, 

abundance data cannot be retrieved from years past.  However, the presence/absence measure of 

milfoil (Milfoil_pres) has been documented for several years and is publicly available on the 

Wisconsin DNR’s website.   

Properties on lakes with milfoil that have been treated will likely suffer a moderated 

negative price effect.  While treatments ranging from herbicides to mechanical cutters can lower 

the abundance of milfoil, these treatments are rarely successful at removing the plant.  A 

treatment variable (Treat) is defined in such a way that requires a treatment to have taken place 
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on a given lake with milfoil and before the transaction, but within the same year.16  If the 

treatment were to take place after the transaction, the associated benefit to a selling property 

would not yet be capitalized into property price (ignoring expectations or knowledge of a 

pending treatment).  In addition to the milfoil variables and treatment, a variable called Prime is 

included to indicate whether or not a transaction took place during the prime months that milfoil 

affects lakes.   

V. CROSS-SECTIONAL HEDONIC MODEL (2005-2006) 

 We begin estimation by exploring the effects of milfoil on property values with the most 

common hedonic specification using cross-sectional arms-length transaction data for the years 

2005-2006.  In addition to demonstrating the endogeneity of milfoil in a hedonic equation, this 

model is estimated to take advantage of the only years in which milfoil abundance data are 

available.  

Econometric Considerations for Cross-Sectional Model 

A number of functional forms are considered.  The first was a linear-linear model, as 

found in many hedonic applications in the literature.  The second was an inverse semi-

logarithmic model, in which the dependent variable is transformed using the natural log operator 

and the independent variables are linear in the parameters.  In addition, non-linear forms and a 

variety of Box-Cox models are estimated to add flexibility to the functional form, given the 

absence of a priori information on the structure of the hedonic price function (Bender, Gronberg, 

and Hwang 1980; Sakia 1992).17   We considered criteria for goodness-of-fit and ease-of-

interpretation in selecting a model for the cross-sectional data. However, all specifications have a 

very similar fit, with the linear Box-Cox (constant lambda transformation on non-binary 

independent variables) fitting just slightly better than a linear-linear model.18 We chose the 
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linear-linear model because of its prevalence in the literature and straight-forward interpretation, 

although we also examine a non-linear specification with the panel data in section 6.19  Pair-wise 

correlation analysis and calculation of variance inflation factors and tolerances for each variable 

fail to indicate that multicollinearity is a serious problem.  Lastly, White’s robust standard errors 

are used to account for potential heteroskedasticity.   

Cross-Sectional Hedonic Results 

Three cross-sectional models are estimated using the following linear specification: 

 ' '
( )i i j i iP X Zβ φ ε= + +         (1)  

where Xi is a Kx1 vector of variables specific to parcel i, Zj(i) is an Lx1 vector of variables 

specific to lake j that contains parcel i (Table 1), and { },β φ  is a set of K+L parameters to be 

estimated.  Results from estimating (1) with ordinary least squares are presented in Table 2, and 

the coefficients reflect the marginal change in selling price resulting from a one unit change in a 

given attribute, holding all else constant.  The coefficients appear to be somewhat unstable across 

the models in Table 2.  Several non-milfoil variables are generally significant from zero at the 

90% confidence level or higher, including Structure, Lot size, Frontage, Frontage2, Water 

clarity, Parcel density, Muskie, Pike, and Distance.  In general, the parameter estimates for the 

non-milfoil variables conform reasonably well to expectations, though the estimated magnitudes 

are not always robust across the three milfoil specifications. 

The milfoil-variables differ across the cross-sectional models, but in each case, illustrate 

the likely endogeneity of milfoil.  When a continuous measure of relative frequency is used to 

gauge the effect of milfoil (model 1), the results indicate a small price premium on a milfoil lake, 

and a larger premium for a milfoil lake that has been treated.  Switching to model 2 and using 

dummy variables to indicate if a lake has low abundance levels of milfoil (<3% relative 
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frequency) or high levels (>3%) yields similar findings. Model 3 aggregates the dummy 

variables seen in model 2 into one presence/absence measure, and similar results are found.  A 

negative price effect not significant from zero is found for properties on lakes with milfoil.  

However, once these lakes are treated, a positive premium significantly different from zero is 

associated with properties on treated milfoil lakes relative to properties on milfoil-free waters.  

There is little intuition to be offered for a positive price effect from the presence of milfoil, and 

despite the inclusion of an unusually rich set of control variables, this result is likely confounded 

by the presence of unobservable neighborhood attributes that are correlated with variables 

indicating the presence of milfoil on a lake.   

Spatially Correlated Unobservables 

Unobservable neighborhood effects are typically explored by examining potential spatial 

autocorrelation in the estimated covariance matrix. To test for the presence of spatial 

autocorrelation, Moran’s I statistic is generated: ' / 's s s sI e We e e=  (Anselin and Bera 1998, p. 

265).  This statistic is computed with the OLS errors (es) and a spatial weight matrix (W) that 

specifies neighbors and is pre-defined by the researcher.  Recent work with micro-level data has 

specified W with distance relationships (e.g. Donovan, Champ, and Butry 2007).  However, 

distance-defined spatial weight matrices can result in a variety of problems in hedonic models.  

For example, Bell and Bockstael (2000) found that hedonic estimates are quite sensitive to the 

assumed structure of a distance-defined W, which is problematic since the specification of W is 

typically treated as a maintained assumption. Further, the process of row-standardizing a 

distance-defined W (which is required for a well-defined econometric problem) is ad-hoc and 

places too much weight on the neighbors of rural houses when the dataset represents a mix of 

dense and rural housing developments (Bell and Bockstael 2000). 
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Fixed neighborhood effects have recently emerged as an alternative to distance-defined 

weight matrices, and neighborhoods are typically defined by boundaries such as those used to 

define census tracts (e.g. see Pope 2008a, 2008b).  In our application for lakeshore property, the 

most plausible theoretical argument regarding the spatial relationships between parcels is that 

each lake represents a natural neighborhood.20  Therefore, W is defined such that all parcels 

within each lake are neighbors.  Intuitively, one would expect the error terms to be correlated 

within a lake because many lake-specific characteristics are shared – as reflected in our primary 

specification which includes multiple lake-specific characteristics as explanatory variables. 

Further, given our interest in estimating the price effects of a lake-specific amenity (a lake free of 

milfoil), the presence of unobserved lake-effects is of particular consequence for our results.  The 

null hypothesis for the Moran’s I statistic is that no spatial correlation exists, and the null is 

rejected at the 99% confidence level, confirming the presence of unobserved neighborhood 

effects.   

VI. SPATIAL DIFFERENCE-IN-DIFFERENCES HEDONIC MODEL (1997-2006) 

The second set of models is estimated using the entire panel dataset from 1997-2006. Our 

strategy for identifying the price effects of milfoil exploits the substantial spatial and temporal 

variation present in the full panel dataset.  Further, the structure of our data allows us to exploit 

developments in panel data methods and estimate cluster-robust standard errors, where each lake 

is a natural cluster.  Inference with cluster-robust standard errors requires no assumptions on 

correlation within a cluster, and places no assumptions on the form of heteroskedasticity 

(Cameron and Trivedi 2005; Ch. 24).  Since clusters are defined as spatial neighborhoods of 

property transactions, cluster-robust standard errors allow for inference robust to any form of 

spatial correlation within each lake without introducing additional structure to the model.  
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Econometric Identification Strategy 

The full dataset consists of a total of 1,841 observations, spanning 172 lakes.  The price 

of parcel i on lake j during time t takes one of two general forms:  

Random effects: ' ' '
( ) 1 ( ) 2 ( ) 3 ( )it it j i t j i j i t t j i itP X Z Impact Before Tβ φ δ δ δ μ ε= + + ⋅ + ⋅ + + +  (2) 

Fixed effects: ' ' '
2 ( ) 3 ( )it it j i t t j i itP X Before T Dβ δ δ α ε= + ⋅ + + +     (3) 

where Xit is a Kx1 vector of variables specific to parcel i, Zj(i)t is an Lx1 vector of variables 

specific to lake j that contains parcel i, Tt is a Jx1 vector of year-specific dummy variables that 

accounts for year-specific price shocks that affect all parcels, and Impactj(i) and Beforej(i)t are 

variables included to identify the difference-in-differences effect of milfoil (discussed below).  In 

(2), μj(i) is the lake (neighborhood) specific random error associated with lake j where parcel i is 

located.  In (3), Dj(i) is an NLx1 vector of dummy variables associated with lake j where parcel i 

is located, where NL indicates the number of distinct lakes in the sample.  Table 3 presents a 

description of additional variables specific to the difference-in-differences specification.     

The purpose of the fixed and random effects is to absorb any unobserved (and observed 

in the fixed effects case) spatial heterogeneity that is clustered within lakes.  Consistent 

estimation of all parameters with equation (2) requires the assumption that the set of independent 

variables { }( ) ( ) ( ), , , ,it j i t j i j i t tX Z Impact Before T  are uncorrelated with both μj(i) and εit.  The key 

difference between the fixed and random effects models is that the fixed effects are not present in 

the error term, and so consistent parameter estimates are possible even if correlation exists 

between the fixed effects and independent variables. The fixed effects specification has far fewer 

variables than the random effects model because any lake-time invariant characteristic is 

absorbed by the fixed effect.  Only variables that vary within a lake or over time are separately 

included.   
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Both the fixed and random effects models outlined above use a difference-in-differences 

specification to estimate the effects of milfoil on property values.  In particular, nine lakes were 

invaded with milfoil after 1999.21  For the nine lakes invaded during 2000-2005, the dataset 

contains 81 transactions before invasion and 80 transactions after invasion.  Given the above 

specifications, the coefficient on Impactj(i) (δ1) will specify the premium/discount that properties 

on lakes with milfoil sell for, relative to those on non-infested lakes.  Because the Impactj(i) 

variable is lake-invariant over time, the dummy variable matrix Dj(i) accounts for this variable in 

the fixed effects model.  The additive result of the coefficients on Impactj(i) and Beforej(i)t
22 – (δ1 

+ δ2) in the random effects model – will specify the premium/discount that properties on lakes 

with milfoil sell for before infestation, relative to properties on non-infested lakes.  Finally, the 

difference-in-differences component follows from this; the before infestation premium (δ1 + δ2) 

minus the after infestation premium (δ1) is simply δ2.  Therefore, the parameter on the variable 

Beforej(i)t (δ2) enables us to back out the difference in premium on milfoil lakes relative to non-

milfoil lakes, before they became infested.23   

 Many lakes in the dataset underwent a change related to minimum frontage zoning in 

May, 1999, creating a potential temporal confounding factor.  We account for temporal variation 

in zoning to see how the premium/discount of lakes differs after the zoning change.  In general, 

strict minimum frontage zoning can either decrease property values by restricting subdivision 

opportunities, or increase property values by restricting the development opportunities of other 

lakefront parcels (Spalatro and Provencher 2001). Analogous to the difference-in-differences 

specification for the milfoil variables, we estimate the average price effects of all the possible 

minimum frontage zoning changes: 100 ft. to either 150 ft., 200 ft. or 300 ft., and from 200 ft. to 
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300 ft.  Not all lakes underwent a change in zoning, as some lakes remained zoned at 200 ft. 

minimum frontage before and after the new ordinance.  

 There are two additional points to justify our identification strategy with respect to 

milfoil.  First is the variation in year of invasion.  The nine lakes became infested over a five-

year period, 2000-2005, with the precise year of invasion varying across lakes.  Conversely, in 

the difference-in-difference hedonic model of Tu (2005), for example, the construction of the 

sports stadium (the event of interest in that study) occurred within one time period.  While it is 

unlikely that some other coinciding events or regional effects plagued Tu’s identification of the 

sports stadium effect, it is worthy to note that the likelihood of a confounding event occurring 

concurrent to the various years that milfoil invasions occurred on each lake is highly unlikely.  

Second, identification of the effect of milfoil is enhanced by the quasi-random nature of the time 

of a milfoil invasion, relative to other changes in lake characteristics.24  As a contrasting 

example, zoning laws are put in place over time and expectations about the laws may be captured 

in real estate values well before the laws actually go into effect.  In that sense, identification of a 

change in zoning can be confounded by prior expectations of the zoning change, and as such, we 

have less confidence in our difference-in-differences estimates of the effects of the zoning 

change.  In the case of milfoil, lake owners are unlikely to believe their lake will be affected by 

milfoil if the species is not already present.  While we argue that milfoil is more likely to show 

up in lakes highly popular for recreational activities, particularly boating and fishing, the vast 

majority of “popular” lakes in the study region are free of milfoil.  Therefore, the effects 

associated with an invasion are unlikely to be diluted by any previous expectations about such an 

event.    
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The last econometric issue to discuss is the use of a ten year time-series of property 

transaction sales.  Given the lack of theoretical guidance in addressing temporal variation in the 

data, we account for price inflation in two ways.  First, a vector of dummy variables Tt is 

included for each observation to specify the year a given transaction takes place.  This 

specification absorbs any year-specific effects on price.  Second, we re-define Tt as a trend 

variable to account for the general upward trends in price.  Use of time-series data is necessary 

for our identification strategy, though it requires the potentially strong assumption with the linear 

specification that the price-differential across lakes is constant over time, and general 

inflationary pressures have the same effect on all properties.  This assumption is relaxed 

somewhat with the following non-linear specification of the fixed effects model: 

' ' '
2 ( ) 3 ( )

1 ( ) j i t tit j iX Before T D
it itP Structure e

β δ δ α
β ε

+ ⋅ + +
= ⋅ + +      (4) 

This specification assumes that assessed structural effects are independent of land-based 

attributes, while the marginal impact of any land-based attribute depends on the level of all other 

land characteristics.25  The assumption that the assessed structural effects are independent of 

land-based attributes is consistent with the explicit assumptions used in property assessments.   

Spatial Difference-in-Differences Results 

Tables 4 and 5 summarize the results from the spatial difference-in-differences model26, 

where the non-linear form (4) is estimated with non-linear least squares (NLLS).  In Table 4, 

time influences are accounted for using a dummy variable for each transaction year, while a time 

trend variable is used for the results presented in Table 5.  Results for the fixed effects model are 

presented in linear and non-linear forms (NLLS).  The results are very similar across the two 

time variable specifications, with the year dummies yielding a slightly better fit.  Nonetheless, 

the stability of coefficients is evident across the two time variable specifications, indicating a 
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certain degree of model robustness.  The coefficients of the non-milfoil variables are generally 

stable across the linear fixed effects and random effects specifications, with the zoning variables 

being the exception.  For example, the coefficients on Structure, Lot size, Frontage, Frontage2, 

and the time variables are nearly identical and of the same order of statistical significance.   

Robustness in functional form is illustrated by comparing the linear fixed effects results 

with the non-linear fixed effects model.  In general, the signs are the same across specifications 

and variables that are significant in one model are statistically significant in the other. Given the 

sensitivity of the gradient algorithm used to solve the non-linear model, lakes with fewer than 

five transactions were omitted, resulting in a loss of 127 observations.  We also examine the 

possibility of an incidental parameters problem – common in non-linear fixed effects models 

with short panels (Greene 2003, p. 690) – by first dropping lakes with fewer than ten 

transactions, then dropping lakes with fewer than fifteen transactions, to ensure our results do not 

depend on a short panel.  The conclusions with respect to the effects of milfoil are robust across 

estimations that drop lakes with fewer than ten or fifteen transactions.  

Given the robustness of these models, only the results from Table 4 will be discussed in 

depth.  In addition to the parcel-specific and time variables, the variables Access, Parcel density, 

and Muskie are significantly different from zero in the random effects model at the 90% 

confidence level or greater.  The zoning variables indicate a negative price effect from the 

county-wide zoning change in 1999, though this result is not robust to the non-linear models, and 

the coefficients do not appear robust across the fixed and random effects models, or across 

Tables 4 and 5.  

For the milfoil variables, Impact and Before, we see results counter to the cross-sectional 

model.  Looking at the random effects model, we see from the Impact coefficient that no 
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statistically significant premium exists for properties affected by milfoil relative to unaffected 

properties.  However, a premium did exist before infestation, as indicated by the Before 

coefficient in the linear fixed effects model—a statistically significant premium of approximately 

$28,000 with the time-dummies, and approximately $29,500 with the trend variable.  The 

estimated milfoil premium from the non-linear model is a discrete-change effect: the difference 

in predicted price between milfoil lakes before and after infestation using the sample mean value 

of all other exogenous variables.  The average price premium that existed on milfoil lakes before 

infestation is $32,087 and is significantly different from zero at a 95% confidence level for the 

non-linear models.27 

  It was argued above that any correlation between the milfoil variable and the error term 

in the random effects model would render the results inconsistent.  Based on the empirical 

evidence presented in Tables 4 and 5, we see this lingering bias in the random effects model.  

The Before coefficient in the fixed effects model, the key variable of interest in these results, is 

some 50% greater in magnitude than in the random effects model.  In addition, the estimated 

standard error of the Before coefficient is higher in the random effects model than in the fixed 

effects model. These results are consistent with the notion that there is correlation between the 

presence of milfoil and unobserved characteristics related to the level of a lake’s attractiveness.  

Coupled with a difference-in-differences approach, the fixed effects model has the least 

restrictive identification assumptions across all estimated models, and combined with our use of 

cluster-robust standard errors, appears to resolve the issues of bias and inefficiency brought 

about by the presence of milfoil on a lake being correlated with unobserved neighborhood 

effects.   

Marginal Willingness-To-Pay to Avoid Milfoil Invasions 
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Using the results from the spatial difference-in-differences hedonic model, insights can 

be made concerning the marginal willingness-to-pay to prevent an additional milfoil infestation 

on a lake.  The hedonic price function can be used to approximate welfare effects for localized 

amenity changes when the number of parcels affected by a change in environmental quality is 

small relative to the land market (Palmquist 1992).  Given our use of a presence/absence dummy 

variable indicating a lake’s milfoil status, the localized amenity change in this paper is the 

invasion of one additional lake with milfoil.28  Given our set of 172 lakes in the same land 

market, evaluating the costs of one additional infested lake reasonably fits the criteria of a 

localized amenity change.   

The results from Tables 4 and 5 indicate that lakefront property owners are willing to 

pay, on average, more than $28,000 for a property on a lake free of milfoil, all else equal 

(depending on specification, results range from $28,000 to $32,087).  With the non-linear model, 

the estimated marginal willingness-to-pay depends on the value of the other exogenous variables, 

and the average varies across milfoil lakes from a low of approximately $13,700 to a high of 

$48,400.29 Since the price of land is a stream of rents in perpetuity, we can calculate the average 

annual marginal willingness to pay as approximately $1,400 (assuming a 5% discount rate). 

Multiplying the average marginal willingness to pay by the number of affected parcels on the 

average lake, we arrive at an aggregate cost of milfoil of about $187,600/year, on average, for 

one additional infested lake.  This amounts to approximately 8% of total property value, or 13% 

of total land value, net of the value of any structure.  For further perspective, consider that there 

are approximately 500 lakes in Wisconsin affected by milfoil, and the State’s Department of 

Natural Resources allocates approximately $4 million dollars annually for the management of all 

aquatic invasive species across the entire state (including prevention efforts on lakes not yet 
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invaded).  While the results of our analysis for marginal changes in milfoil invasions cannot be 

aggregated to examine the economic cost of milfoil on all 500 lakes, the marginal willingness-to-

pay estimates for preventing an additional lake from being infested are nevertheless useful for 

examining policies aimed at preventing the spread of milfoil.    

VII. CONCLUSIONS 

The findings of this paper reveal that lakes invaded with the aquatic species Eurasian 

Watermilfoil experienced an average 13% decrease in land values after invasion.  Therefore, we 

document a unique phenomenon in the environmental economics literature: aquatic invasive 

species can depress land values.  This result complements prior analyses that quantify the effects 

of fecal coliform counts and water clarity on the values of shoreline property (Leggett and 

Bockstael 2000; Poor et al. 2001). Government agencies are spending significant dollars on 

invasive species management, despite the general lack of estimates on the costs of invasions 

derived from a rigorous economic framework  Our results provide some evidence as to the 

potential benefits derived from preventing the spread of Eurasian Watermilfoil, one of the most 

widespread and common aquatic invasive species in North America. 

 In addition to providing empirical evidence as to the potential benefits from reducing the 

spread of invasive species, this paper also develops a quasi-experimental specification to identify 

the effects of changes in endogenous neighborhood amenities within the commonly estimated 

hedonic framework.  In our application, a lake is more likely to be invaded with milfoil if it is 

more popular with recreational boaters.  Therefore, since lakes popular with recreational boaters 

are also likely to be popular with potential residents, and since many aspects of a lake’s 

amenities may be difficult to quantify, the presence of milfoil on a lake is an endogenous 

variable in the hedonic price equation.  Our identification strategy is based on a spatial 
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difference-in-differences specification, and isolates the source of endogeneity bias as arising 

from unobserved neighborhood effects.  Although typically treated as an econometric efficiency 

issue in the literature, we highlight the estimation bias that ensues when a measurable 

neighborhood amenity is correlated with unobservable neighborhood effects.  Our spatial 

difference-in-differences specification defines distinct neighborhood fixed effects to control for 

both observable and unobservable neighborhood effects, while exploiting the fact that the 

environmental amenity of interest (a lake free of milfoil) varies over the ten years of property 

transactions used in our dataset.  In addition, the neighborhood clustering aspect of properties 

allows us to estimate cluster-robust standard errors with no restriction on spatial correlation 

within neighborhoods. 

Given the potential for correlation between observed and unobserved neighborhood 

amenities in hedonic property value models, the identification strategy employed in this study 

could potentially be used in other settings.  The most obvious example would be hedonic 

analyses of the many other aquatic invasive species that are readily spread by the movement of 

recreational boaters and anglers (e.g. zebra mussels, rusty crayfish, etc.), as the same 

endogeneity problems highlighted in this paper may also plague other hedonic analyses of 

aquatic invasive species. The fixed effects approach works best with clearly defined spatial 

neighborhoods.  In this study, lakes give rise to natural neighborhoods, though such a clear 

definition of neighborhoods may not always exist for landscapes with less development 

fragmentation.  However, it should be noted that all spatial econometric models face the problem 

of defining the relevant spatial neighborhood. Some studies use a distance-decay approach, 

others define neighbors by concentric rings of varying radius around a particular parcel, while 

others subjectively define a neighborhood to share a common error term.  While specific 
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applications may naturally lend themselves to particular spatial structures, this paper 

demonstrates the potential of specifying fixed neighborhood effects jointly within a difference-

and-differences framework as a strategy for identifying the effects of an endogenous 

neighborhood amenity on property values.     
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TABLE 1  
Description of Variables 

 
Variable 
Name 

Mean Std. Dev. Variable Description 

Price 268,034.57 175,629.23 selling price of the property in real dollars (2006) 
Structure 79,422.13 77,145.21 assessed structure value before transaction of the property 
Lot size 2.06 2.60 size (in acres) of the property 
Frontage 185.65 151.93 frontage (in feet) of the property 
Lake area 503.75 530.32 surface area (in acres) of the lake that the property borders  
Assoc 0.39 0.49 =1 if the property is on a lake with an association and 0 

otherwise 
Access 0.86 0.35 =1 if the property is on a lake with public access and 0 

otherwise 
Parcel density 0.35 0.21 number of private parcels divided by the area of the lake 

that the property borders 
Zone 180.04 42.15 minimum frontage requirement for the lake that the property 

borders 
Max depth 36.14 18.83 maximum depth (in feet) of the lake that the property 

borders 
Prime 0.04 0.20 =1 if transaction of the property takes place between June 1 

and September 30 and is subjected to milfoil 
Milfoil  

Frequency* 
Low* 

High* 
Present* 

 
0.78 
0.11 
0.09 
0.20 
 

 
2.60 
0.32 
0.28 
0.40 

represents multiple variables, including i) relative 
frequency—a continuous measure of lake-wide milfoil 
abundance, ii) dummy variables representing low 
(0%<relative frequency<3%), and high frequency (>3%), 
and iii) a presence/absence measure—present if relative 
frequency>0.  Inclusion of these variables varies, but is 
made clear in the results.   

Treat*  0.03 
 

0.17 =1 if the lake the property borders was treated for milfoil 
before the transaction within the same calendar year 

2006* 0.47 0.50 = 1 if the transaction took place in 2006 
Water clarity 3.04 1.19 water clarity (secchi depth) measure of the lake that the 

property borders 
Fishing Indices    

Muskie 2.53 1.37 
Pike 1.16 0.80 

Walleye 1.40 0.81 
Bass 1.27 0.50 

Panfish 1.84 0.75 

index for quality of each fishery (muskie, pike, walleye, 
bass, and panfish) on the lake the property borders 

Distance 12.75 8.30 Distance to nearest town (in miles)  
Note: all descriptive statistics are based on the full panel data set unless denoted by an asterisk
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TABLE 2  
Cross-Sectional Estimation Results 

 Model 1   Model 2   Model 3  
R2 .7471   .7545   .7475  
 Coef. Robust 

Std. Err. 
 Coef. Robust 

Std. Err. 
 Coef. Robust  

Std. Err. 
Constant -29323.54 40574.02  -46644.35 40329.50  -23471.11 39327.08 
Parcel-Specific Variables        
Structure 1.59* 0.09  1.60* 0.09  1.58* 0.09 
Lot size 7280.03** 4199.14  7835.79** 4079.69  7495.90** 4137.11 
Frontage 580.67* 129.00  574.75* 125.47  599.83* 127.81 
Frontage2 -0.54* 0.13  -0.54* 0.13  -0.55* 0.13 
Milfoil Variables        
Prime -38.57 18517.67  8697.20 20222.73  16461.34 21061.81 
Milfoil_freq 3057.69 2094.53  -- --  -- -- 
Milfoil_freq*treat 22698.47* 4760.33  -- --  -- -- 
Milfoil _low -- --  -56054.44* 19706.23  -- -- 
Milfoil _high -- --  53511.59* 26397.99  -- -- 
Milfoil_low*treat -- --  169173.60* 47504.18  -- -- 
Milfoil_high*treat -- --  101653.80* 26250.68  -- -- 
Milfoil_pres -- --  -- --  -18008.47 19099.63 
Milfoil_pres*treat -- --  -- --  121779.30* 31329.00 
Other Lake-Specific Variables        
Lake area 4.34 11.23  11.30 11.09  5.61 11.38 
Assoc -10757.95 11336.24  -12797.72 11579.82  -11829.46 11446.83 
Access 19100.89 18263.10  21254.44 18406.01  18673.47 18193.20 
Parcel density -77277.76* 32256.91 -47817.36 32485.12 -57975.23** 32585.24 
Zone  -129.09 170.94 

 
 -250.71 174.49 

 
 -164.23 172.35 

Max depth 634.82 490.99  835.46** 493.72  588.28 478.08 
Water clarity 13893.85* 6834.28  14355.30* 6771.99  13367.93* 6801.19 
Muskie 16620.55* 5895.60  14011.07* 5818.25  16905.81* 5797.43 
Pike 17715.32* 7275.70  15246.65* 7022.79  14762.55* 7262.75 
Walleye 3250.71 9350.02  3273.84 9888.55  8776.44 9629.07 
Bass -2796.30 8579.56  -5530.87 8662.92  -3275.32 8613.91 
Panfish 2269.80 7257.99  3552.07 7158.59  2309.16 7264.91 
Distance 3708.20 2801.70  8089.48* 3043.95  2994.18 2756.78 
Distance2 -133.01 84.56  -247.78* 91.86  -117.09 84.03 

Time Variables         
2006 -10896.12 10176.09  -13116.00 10108.00  -11277.33 10169.76 

Note: n = 457 for all models. All standard errors are calculated with White’s method. All dollar 
amounts in 2006 dollars. Single asterisk (*) denotes significance at the 95% level; double 
asterisk (**) denotes significance at the 90% level.  
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TABLE 3 
Description of Additional Variables in Spatial Difference-in-Differences Model 

 
Variable 
Name 

Mean Std. Dev. Variable Description 

Impact 0.21 0.41 = 1 if the property is on a milfoil-infested lake as of 
2006 and 0 otherwise 

Before 0.04 0.21 = 1 if the property is on a milfoil-infested lake AND 
the transaction occurs before infestation 

Zone_100_any 0.47 
 

0.50 = 1 if the property borders a lake that has undergone a 
zoning change from 100ft minimum frontage to some 
other category under the 1999 Vilas County Shoreland 
Zoning Ordinance 

Zone_200_300 0.06 
 

0.23 = 1 if the property borders a lake that has undergone a 
zoning change from 200ft minimum frontage to 300ft 
minimum frontage under the 1999 Vilas County 
Shoreland Zoning Ordinance 

Aft_100_any 0.39 
 

0.49 = 1 if the property borders a lake that has undergone a 
zoning change from 100ft to some other amount AND 
the transaction takes place after the change  

Aft_200_300 0.05 
 

0.22 = 1 if the property borders a lake that has undergone a 
zoning change from 200ft to 300ft AND the transaction 
takes place after the change 

Time   
1998 0.09 0.29 
1999 0.09 0.29 
2000 0.08 0.27 
2001 0.10 0.29 
2002 0.10 0.31 
2003 0.12 0.33 
2004 0.11 0.31 
2005 0.13 0.34 
2006 0.12 0.32 

Trend 5.02 2.78 

Represents two sets of variables: 
1) In the first case, a dummy variable is used to 

designate the transaction year (=1 if the 
property transaction took place in one of the 
given years and zero otherwise). 1997 is the 
omitted year.   

2) In the second estimation, a continuous trend 
variable is used to give the average price 
change from year to year.   

Dj(i) -- -- = 1 to designate which lake the property borders 
 



 34

TABLE 4 
Results for Spatial Difference-in-Differences Models with Year Dummies 

 Fixed Effects  NLLS Fixed Effects  Random Effects 
 Coef. Robust 

Std. Err. 
 Coef. Robust 

Std. Err. 
 Coef. Robust 

Std. Err. 
Constant -- --  -- --  -112349.00* 37987.74 
Parcel-Specific Variables        
Structure 1.52* 0.05  1.51* 0.06  1.53* 0.05 
Lot size 5006.16* 1532.17  1.29* 0.31  5506.89* 1558.12 
Frontage 235.26* 38.69  3.47* 0.71  224.47* 37.17 
Frontage2 -0.03 0.02  -2.36* 0.71  -0.03 0.02 
Milfoil Variables        
Prime 8772.96 11824.45  -0.01 0.09  9807.78 11883.62 
Before 28294.20* 9509.41  0.21* 0.08  18880.71** 11308.22 
Impact -- --  -- --  9006.63 17961.4 
Other Lake-Specific Variables        
Lake area -- --  -- --  17.29 16.8 
Assoc -- --  -- --  -2617.92 9081.45 
Access -- --  -- --  25158.20* 10160.32 
Parcel density -- --  -- --  -25378.54** 13399.38 
Zone_100_any -- --  -- --  38992.96* 14753.87 
Zone_200_300 -- --  -- --  47270.34* 17061.8 
Aft_100_any -38626.53* 10353.54  -0.22* 0.07  -37379.73* 9817.65 
Aft_200_300 -59163.00* 11118.07  -0.20 0.13  -43602.31* 11596.76 
Max depth  -- --  -- --  641.80 406.57 
Water clarity -- --  -- --  7072.71 6228.02 
Muskie -- --  -- --  8578.92* 4057.88 
Pike -- --  -- --  3916.67 5633.33 
Walleye -- --  -- --  7947.29 6959.83 
Bass -- --  -- --  -3712.71 7427.99 
Panfish -- --  -- --  1052.25 6936.19 
Distance -- --  -- --  3389.18 2167.68 
Distance2 -- --  -- --  -108.85 62.82 
Time-Variables        
1998 10095.20 10868.14  0.12 0.14  10946.07 10604.32 
1999 54634.80* 13027.25  0.39* 0.13  53292.81* 12464.55 
2000 63306.83* 13330.03  0.54* 0.12  61937.59* 12793.04 
2001 60896.67* 11873.06  0.48* 0.11  59634.27* 11308.58 
2002 79208.17* 14979.5  0.65* 0.14  78290.49* 14376.71 
2003 95634.54* 14933.23  0.73* 0.13  93705.30* 14542.26 
2004 109544.10* 14186.6  0.83* 0.13  108652.70* 13620.54 
2005 128563.20* 15380.94  0.97* 0.12  127870.50* 14553.28 
2006 128854.00* 16939.86  0.95* 0.14  121101.90* 16230.88 
Note: n = 1841 for Fixed Effects and Random Effects models; n = 1714 for NLLS Fixed Effects 
Model. 172 fixed effects (106 for NLLS model) are not displayed for space. Data is clustered by 
lake, and all standard errors are cluster robust. All dollar amounts in 2006 dollars. Single asterisk 
(*) denotes significance at the 95% level; double asterisk (**) denotes significance at the 90% 
level. 
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TABLE 5 
Results for Spatial Difference-in-Differences Models with Year Trend Variable 

 
 Fixed Effects  NLLS Fixed Effects Random Effects 
 Coef. Robust 

Std. Err. 
 Coef. Robust 

Std. Err. 
 Coef. Robust 

Std. Err. 
Constant -- --  -- --  -97264.30* 36375.36 
Parcel-Specific Variables        
Structure 1.52* 0.06  1.51* 0.06  1.52* 0.05 
Lot size 4928.06* 1483.99  1.28* 0.31  5379.84* 1516.35 
Frontage 241.14* 39.0  3.57* 0.68  231.95* 37.51 
Frontage2 -0.04* 0.02  -2.51* 0.67  -0.03* 0.02 
Milfoil Variables        
Prime 9471.35 11222.6  -0.02 0.09  9679.25 11266.38 
Before 29518.13* 10425.13  0.2* 0.1  20893.91** 11720.78 
Impact -- --  -- --  8394.44 18146.18 
Other Lake-Specific Variables        
Lake area -- --  -- --  18.56 17.12 
Assoc -- --  -- --  -2438.35 9385.3 
Access -- --  -- --  24724.76* 10559.05 
Parcel density -- --  -- --  -24124.60** 13650.42 
Zone_100_any -- --  -- --  26024.91 15698.42 
Zone_200_300 -- --  -- --  37591.62* 15450.28 
Aft_100_any -23783.32* 9097.6  -0.12** 0.07  -22806.40* 8839.28 
Aft_200_300 -44400.53* 9533.34  -0.07 0.12  -31083.80* 8883.4 
Max depth  -- --  -- --  614.54 428.78 
Water clarity -- --  -- --  6443.78 6628.68 
Muskie -- --  -- --  8303.25* 4144.46 
Pike -- --  -- --  3247.01 5840.7 
Walleye -- --  -- --  8587.34 7041.65 
Bass -- --  -- --  -3414.28 7612.22 
Panfish -- --  -- --  1404.82 7085.07 
Distance -- --  -- --  3203.29 2220.47 
Distance2 -- --  -- --  -102.55 64.35 
Time Variables        
Trend 13537.41* 1265.53  0.1* 0.01  13105.92* 1201.68 
Note: n = 1841 for Fixed Effects and Random Effects models; n = 1714 for NLLS Fixed Effects 
Model. 172 fixed effects (106 for NLLS model) are not displayed for space. Data is clustered by 
lake, and all standard errors are cluster robust. All dollar amounts in 2006 dollars. Single asterisk 
(*) denotes significance at the 95% level; double asterisk (**) denotes significance at the 90% 
level. 
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Figure 1. Map of Vilas County, Wisconsin 
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Endnotes 
� 
1 For example, the discharge of ballast water by ships into a different body of water from where 

the ship originates is thought to be a primary avenue of aquatic species invasions.  In response, 

the United States Environmental Protection Agency is currently proposing extensive regulations 

governing the discharge of ballast water. 

2 Milfoil fragments get stuck on boats, boat motors, boat trailers, and get into bait buckets. 

Individuals who launch boats in multiple lakes can inadvertently spread the plant. 

3 Endogeneity arising from correlated unobserved neighborhood effects was likely the primary 

reason why the cross-sectional analysis of Halstead et al. (2003) found no conclusive evidence of 

variable milfoil on shoreline prices in a set of ten New Hampshire lakes (variable milfoil is a 

different, though related, species to Eurasian Watermilfoil).  

4 Examples include Bell and Bockstael (2000), Kim, Phipps, and Anselin (2003), Wu, Adams, 

and Plantinga (2004), and Donovan, Champ, and Butry (2007). 

5 This assumption is quite reasonable in the case of Hallstrom and Smith (2005), given that their 

change in neighborhood amenity is based on the truly random path of a hurricane. 

6 The authors thank Mike Duening for supplying these data. 

7 The authors thank Barb Gibson for supplying these data. 

8 See Wisconsin Lakes Book at http://www.dnr.state.wi.us/org/water/fhp/lakes/list/#lakebook  

9 See Listing of Wisconsin Waters with milfoil at 

http://dnr.wi.gov/invasives/fact/milfoil/charts/ewm2006_by_county.pdf 

10 See Wisconsin Lakes Book (cited above) and Wisconsin Muskellunge Waters: Vilas County at 

http://www.dnr.state.wi.us/fish/musky/lakes/vilas.html  



 38

                                                                                                                                                             
11 We thank Jen Hauxwell of the DNR, Crystal Koles and Melissa Davison of Northern 

Environmental, and Tim Hoyman of Onterra for assistance with the abundance data. 

12 The ratings distinguish lakes as: trophy fisheries, consistent action with strong populations, 

intermediate action, minor populations, and waters with no muskie.  Rankings for other fish 

species are not based off surveys as detailed as the muskie ratings and range from 0 (not present) 

to 3 (abundant) 

13 A lake can be pristine because it either has significant amounts of publicly owned shoreline, or 

because the average privately owned parcel is large.  

14 Lakes infested with milfoil in the dataset include: Arrowhead Lake, Boot Lake, Catfish Lake, 

Cranberry Lake, Duck Lake, Eagle Lake, Forest Lake, Little Saint Germain Lake, North Twin 

Lake, Otter Lake, Scattering Rice Lake, Silver Lake, South Twin Lake, Upper Gresham Lake, 

Voyageur Lake, Watersmeet Lake, and Yellow Birch Lake.   

15 In a recent survey of shoreline property owners in the region, milfoil invasions were one of the 

most frequently voiced lake management concerns.  Without prompting, many respondents 

mentioned milfoil concerns in a section requesting general comments.  For more details on the 

survey, see the website: lter.limnology.wisc.edu/lakeresident_survey_summary.pdf.. 

16 We thank Nicole Nikolaus and Jen Hauxwell of the Wisconsin DNR for their assistance with 

treatment records. 

17 A Box-Cox transformation can be applied to non-binary independent variables and the 

dependent variable.  The transformation looks as follows: (Xλ-1)/ λ (Greene 2003, p. 173). 

18 The Akaike information criterion for the linear (Box-Cox) model is 16.35 (16.32), and all 

qualitative conclusions are identical across both specifications.  

19 See Horsch (2008) for more detail on other specifications. 
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20 Given the presence of highly irregular lake shorelines with numerous bays and peninsulas, the 

use of a distance threshold is questionable in this application.  Further, given the density of lakes 

in our study region, many parcels will be closer in Euclidean distance to parcels on other lakes 

than to parcels on their own lake, and so using Euclidean distances is also highly questionable. 

21 Lakes infested with milfoil after 1999 include: Arrowhead Lake, Boot Lake, Cranberry Lake, 

Forest Lake, Little Saint Germain Lake, North Twin Lake, Silver Lake, South Twin Lake, and 

Upper Gresham Lake.   

22 The Before variable is an interaction of Impact and a variable that designates whether or not 

the ith transaction occurs before the infestation.  Therefore the price premium with respect to 

Impact is δ1 + δ2  in the random effects model.  The second component of this effect, δ2, is turned 

on or off depending if the ith transaction took place before or after an infestation.   

23 The milfoil variables that appeared as continuous abundance measures in the cross-sectional 

model are purely presence/absence indicators in the difference-in-differences models.  This is 

primarily because abundance data are unavailable for years prior to 2005.   

24 One potential confounding variable would be if milfoil lakes experienced significantly more 

new development over this period, and hence, increases in nutrient loading that could be 

correlated with milfoil.  However, this is unlikely since the lakes invaded with milfoil in our 

sample experienced a minor average development increase of approximately 2% in parcel 

density. 

25 An alternative to the linear and non-linear approaches employed here would be to estimate the 

difference-in-difference effects with Athey and Imbens’ (2006) non-parametric estimator. 

26 The Within estimator is used to estimate coefficients in the linear fixed effects model (see 

Cameron and Trivedi 2005). 
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27 Standard errors of the discrete-change effect are calculated with the Delta Method (Greene 

2003, p. 70). 

28 Our results can only be used to derive the implicit price of being on a lake infested with 

milfoil, not the implicit price of reducing the abundance of milfoil on an already infested lake. 

29 The average willingness-to-pay for each milfoil lake is significantly different from zero at the 

5% level and is calculated with the lake-specific sample mean values of the exogenous variables. 
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