209 research outputs found

    Online variable-sized bin packing

    Get PDF
    AbstractThe classical bin packing problem is one of the best-known and most widely studied problems of combinatorial optimization. Efficient offline approximation algorithms have recently been designed and analyzed for the more general and realistic model in which bins of differing capacities are allowed (Friesen and Langston (1986)). In this paper, we consider fast online algorithms for this challenging model. Selecting either the smallest or the largest available bin size to begin a new bin as pieces arrive turns out to yield a tight worst-case ratio of 2. We devise a slightly more complicated scheme that uses the largest available bin size for small pieces, and selects bin sizes for large pieces based on a user-specified fill factor ƒ≥12, and prove that this strategy guarantees a worst-case bound not exceeding 1.5+ƒ2

    Bounded space on-line variable-sized bin packing

    Get PDF
    In this paper we consider the fc-bounded space on-line bin packing problem. Some efficient approximation algorithms are described and analyzed. Selecting either the smallest or the largest available bin size to start a new bin as items arrive turns out to yield a worst-case performance bound of 2. By packing large items into appropriate bins, an efficient approximation algorithm is derived from fc-bounded space on-line bin packing algorithms and its worst-case performance bounds is 1.7 for k > 3

    Solving Bin Packing Problems Using VRPSolver Models

    Get PDF
    International audienceWe propose branch-cut-and-price algorithms for the classic bin packing problem and also for the following related problems: vector packing, variable sized bin packing and variable sized bin packing with optional items. The algorithms are defined as models for VRPSolver, a generic solver for vehicle routing problems. In that way, a simple parameterization enables the use of several branch-cut-and-price advanced elements: automatic stabilization by smoothing, limited-memory rank-1 cuts, enumeration, hierarchical strong branching and limited discrepancy search diving heuristics. As an original theoretical contribution, we prove that the branching over accumulated resource consumption (GĂ©linas et al. 1995), that does not increase the difficulty of the pricing subproblem, is sufficient for those bin packing models. Extensive computational results on instances from the literature show that the VRPSolver models have a performance that is very robust over all those problems, being often superior to the existing exact algorithms on the hardest instances. Several instances could be solved to optimality for the first time

    The two-dimensional bin packing problem with variable bin sizes and costs

    Get PDF
    AbstractThe two-dimensional variable sized bin packing problem (2DVSBPP) is the problem of packing a set of rectangular items into a set of rectangular bins. The bins have different sizes and different costs, and the objective is to minimize the overall cost of bins used for packing the rectangles. We present an integer-linear formulation of the 2DVSBPP and introduce several lower bounds for the problem. By using Dantzig–Wolfe decomposition we are able to obtain lower bounds of very good quality. The LP-relaxation of the decomposed problem is solved through delayed column generation, and an exact algorithm based on branch-and-price is developed. The paper is concluded with a computational study, comparing the tightness of the various lower bounds, as well as the performance of the exact algorithm for instances with up to 100 items

    Enhanced pseudo-polynomial formulations for bin packing and cutting stock problems

    Get PDF
    We study pseudopolynomial formulations for the classical bin packing and cutting stock problems. We first propose an overview of dominance and equivalence relations among the main pattern-based and pseudopolynomial formulations from the literature. We then introduce reflect, a new formulation that uses just half of the bin capacity to model an instance and needs significantly fewer constraints and variables than the classical models. We propose upper- and lower-bounding techniques that make use of column generation and dual information to compensate reflect weaknesses when bin capacity is too high. We also present nontrivial adaptations of our techniques that solve two interesting problem variants, namely the variable-sized bin packing problem and the bin packing problem with item fragmentation. Extensive computational tests on benchmark instances show that our algorithms achieve state of the art results on all problems, improving on previous algorithms and finding several new proven optimal solutions
    • …
    corecore