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Abstract

We propose branch-cut-and-price algorithms for the classic bin packing problem and also
for the following related problems: vector packing, variable sized bin packing and variable
sized bin packing with optional items. The algorithms are defined as models for VRPSolver,
a generic solver for vehicle routing problems. In that way, a simple parameterization en-
ables the use of several branch-cut-and-price advanced elements: automatic stabilization
by smoothing, limited-memory rank-1 cuts, enumeration, hierarchical strong branching and
limited discrepancy search diving heuristics. As an original theoretical contribution, we
prove that the branching over accumulated resource consumption (Gélinas et al. 1995), that
does not increase the difficulty of the pricing subproblem, is sufficient for those bin packing
models. Extensive computational results on instances from the literature show that the
VRPSolver models have a performance that is very robust over all those problems, being
often superior to the existing exact algorithms on the hardest instances. Several instances
could be solved to optimality for the first time.

1 Introduction

Bin packing problems are among the most classic combinatorial optimization problems, being
discussed since the 1930s [22]. The problems addressed in this paper can be defined as follows:

e Bin Packing Problem (BPP). Let I = {1,...,Z} be a set of Z items and assume an
unlimited quantity of identical bins with integer positive capacity Q. Each i € I has integer
positive weight w; < Q. The goal is finding a packing using the minimum number of bins,
such that, the total weight of the items in a bin does not exceed its capacity.

e Vector Packing Problem (VPP). Let I = {1,...,Z} be a set of items and D a set of
dimensions. Assume an unlimited quantity of identical bins with integer positive weight
capacities Q¢, d € D. Each i € I has integer non-negative weights wé < Q?, d € D. The
goal is to pack all items into the minimum possible number of bins, such that, for each
dimension, the total weight of the items in a bin does not exceed its capacity.

e Variable Sized Bin Packing Problem (VSBPP). Let I = {1,...,Z} be a set of T
items and K = {1,...,K} a set of K bin types. There are uy, bins of type k € K available,
each one having positive integer capacity @y and positive integer cost ci. Fach i € I has
integer positive weight w; < Qmer = maxgex Qr. The goal is to pack all items into a
least costly set of bins, considering the availability of each bin type and such that the total
weight of the items in a bin does not exceed its capacity.



e Variable Sized Bin Packing Problem with Optional Items (VSBPPOI). Same
as before, except that each item ¢ € I is associated to a positive integer penalty p; for
not packing it. The goal is find a packing minimizing the costs of the used bins plus the
penalties for the non-packed items.

There is a vast literature on those problems, specially for the classic BPP. A comprehensive
survey on exact methods for BPP, including an original comparative computational study, was
published in 2016 by Delorme et al. [11]. After that, other exact algorithms for BPP were
proposed in [10, 42]. Recent exact algorithms for VPP were presented in [6, 19, 43]. The best
exact algoriths for VSBPP are those in [23, 1, 17, 4]. The VSBPPOI was less studied, the best
exact algorithms for it were presented in [4].

Big advances in the exact solution of Vehicle Routing Problems (VRPs) by Branch-Cut-and-
Price (BCP) algorithms have been accomplished in recent years, as surveyed in [9]. A milestone
was certainly the Branch-Cut-and-Price (BCP) algorithm of [24], that could solve Capacitated
VRP (CVRP) instances with up to 360 customers, a large improvement upon the previous record
of 150 customers. That BCP exploits many algorithmic elements introduced by several authors,
combining and enhancing them. Improvements of the same magnitude were later obtained
for several other variants, like VRP with Time Windows (VRPTW) [25] and Heterogeneous
Fleet VRP (HFVRP) [28]. Unhappily, designing and coding each one of those complex and
sophisticated BCPs has been a highly demanding task, measured on several work-months of a
skilled team. VRPSolver [31] is a software that contains a state-of-the-art BCP algorithm for
a very generic model that encompasses most VRP variants found in the literature. Algorithms
for particular problems are obtained by defining certain elements in the generic model (using
a Julia language interface), in the so-called specific problem VRPSolver models. Experiments
with VRPSolver models on ten of the most classic VRP variants, including CVRP, VRPTW and
HFVRP, show a performance that is competitive or even superior to best specific algorithms for
each one of those variants.

This works proposes VRPSolver models for the above mentioned bin packing variants and
investigates the performance of the resulting BCP algorithms. As will be shown, even though bin
packing problems are not VRPs, VRPSolver can be a quite effective tool for solving them. This
is not completely unexpected. Some of the most recent algorithms for bin packing problems, like
those in Hefller et al. [19] and Wei et al. [42], are BCP algorithms that clearly borrow ideas from
VRP literature. In particular, those algorithms also solve the pricing subproblem as a resource
constrained shortest paths problem, using a labeling algorithm, as is usual on VRP.

The theoretical novelty of this paper is related to the branching scheme over accumulated
resource consumption by Gélinas et al. [15]. The scheme was originally proposed in the context
of an algorithm for a time constrained VRP, but it can be applied in any situation where the
pricing subproblem is a resource constrained shortest path and is implemented in VRPSolver.
It has the very nice feature of not increasing the pricing complexity in any child node. So, we
adopted it in our bin packing VRPSolver models. In principle, we believed that an additional
branching scheme, like Ryan and Foster [34] (that makes pricing subproblems harder), would be
needed after all accumulated consumption branching alternatives were exhausted. Happily, we
could prove that this is not necessary.

This paper is organized as follows. Section 2 reviews the generic VRPSolver model, used
to define the specific models given in Section 3. Section 4 contains the proof that the branch-
ing on accumulated resource consumption, used in all models, is sufficient. Section 5 presents
computational results and comparisons with existing algorithms in the literature. Finally, some
additional analysis of the results and future perspectives are provided in Section 6.

2 Reviewing the Generic VRPSolver Model

The generic VRPSolver model is a special Mixed Integer Program (MIP) that contains variables
associated to resource constrained paths over directed, not necessarily simple, graphs defined



by the user. As the number of such variables is usually huge, they are dynamically priced by
solving Resource Constrained Shortest Path (RCSP) problems [20]. Since the integrality of some
variables need to be enforced, the MIP is solved by a Branch-and-Price (BP) algorithm. If cuts
are also separated the resulting algorithm becomes a Branch-Cut-and-Price (BCP). In partic-
ular, if the so-called packing sets are defined, Limited-Memory Rank-1 cuts are automatically
separated. This section reviews the VRPSolver model. Some advanced features not used in this
paper are omitted, readers interested in knowing them may refer to this detailed reference [30].

2.1 Path Generator Graph

All models in this paper use a single path generator graph. So, we simplify the explanation
by assuming that the user defines a single graph G = (V, A). She/he should also define: (1)
two special vertices in V', vsource and wvgink; (2) a set R of resources, together with their arc
consumptions and accumulated consumption intervals. For each r € R and a € A, ¢, is
the consumption of resource r in arc a and [ly,,, Uq ] is its accumulated resource consumption
interval. A path p = (Vsource = V0,01,V1,- -+, Gn—1,Vn—1,0n,Vpn = Vsink) in G is said to be
resource constrained if, for every r € R, the accumulated resource consumption Sp at visit j,
0 <j <mn, where S§, = 0 and S¥, = max{ly, , S} |, + ga;r}, does not exceed Uq, - We
remark that the previous deﬁmtlon allows resources to be disposed in order to satisfy the lower
bounds [, on accumulated consumption of an arc a; on the other hand, upper bounds u, , are
strict. An example of a situation where resources can be disposed would be in the VRP with
Time Windows problem, where a vehicle can arrive early at a customer and wait (i.e., dispose
some time resource) until the opening of its time window. Let P denote the set of all resource
constrained paths in G. For all a« € A and p € P, let h? indicate how many times arc a appears
in path p.

2.2 Formulation and Mapping

The MIP model is defined by the user as follows. There are variables x;, 1 < j < ny, and
variables ys, 1 < s < ny. The first 71 = variables and the first no y variables are defined to be
integer. Equations (la) and (1b) define a general objective function and m general constraints
over those variables, respectively. For each variable z;, 1 < j < nj, M(z;) C A defines its
mapping into a non-empty subset of the arcs. Mappings do not need to be disjoint, the same arc
can mapped to more than one variable z;. Define M ~'(a) as {j|1 < j <ni;a € M(z;)}. Asnot
all arcs need to belong to some mapping, some M ~! sets may be empty. For each path p € P,
let A\, be a non-negative integer variable. The relation between variables x and X is given by
(1c). The values L and U are given lower and upper bounds on number of paths in a solution.

ni no
Min Z CjTj + Z fsys (13')
Jj=1 s=1
ni no
S.t. E Q;iT; + E Bisys > d;, t=1,...,m, (1b)
j=1 s=1
T;j= > R2 | A j=1...,n, (1c)
pEP \aeM(z;)
L<S A\ <U. (1d)
peP
Ap € Ly, p € P, (le)
.TjEZ,ySEZ, j=1...,n1,s=1,...,n9. (1f)

A feasible solution to Formulation (1) is composed of a set of paths, each path p € P with
multiplicity A, in the solution, and perhaps additional decisions represented by the values as-
signed to variables ys, s = 1,...,n2. Hence, modelling a problem as (1) requires it to contain
structures that can be cast into paths in a properly defined graph. It is preferable that such a



graph has polynomial size. Then, resources should be created to model “intrapath” constraints
while global “interpath” constraints, and the objective function, should be modelled as (1b), and
(1a), respectively. Note that the values of z;, j = 1,...,nq, are completely defined as a function
of the path variables, through the mappings. Thus, these variables are only created for allowing
expressing (la) and (1b).

Eliminating the x variables and relaxing the integrality constraints, the following LP, corre-
sponding to the root node of the BP algorithm, is obtained:

Min Z (% Cj Z h‘g) >\p + %::1 fsys (2&)

peEP \j=1 aeM(z;)

s=1

peP \j=1  aeM(x;)
L<Y A <U, (2)
peEP
Ap >0, p € P. (2d)

Master LP (2) is solved by column generation. Let m;, 1 <14 < m, denote the dual variables of
Constraints (2b), vy and v_, are the dual variables of Constraints (2c). The reduced cost of an

arc a € A is defined as: .
Cq = Z Cj — Z Z QTG

jeM=1(a) i=1jeM~"(a)

The reduced cost of a path p = (vg,a1,v1,...,0n-1,Vn—1,0n, V) € P is:

n
e(p) = ZE% —vy —v_.
j=1

So, the pricing subproblems correspond to finding a path p € P with minimum reduced cost.
The above scheme assumes that no additional cuts are being added to the formulation. The
interested reader may consult [24] on how cuts can be handled.

2.3 Packing Sets and Some Advanced Algorithmic Elements

Let B C 24 be a collection of mutually disjoint subsets of A such that the constraints:

> > ma, <1, BeB, (3)

a€B peP

are satisfied by at least one optimal solution (z*,y*, \*) of Formulation (1). This means that
the arcs in each B € B can appear at most once in all paths p € P that are part of some optimal
solution. In those conditions, we say that B defines a collection of packing sets. The definition
of a proper B should be done by the user as part of the modeling.

The information given by the packing sets is used by VRPSolver to improve the solution
of (1), switching from a basic BP algorithm to an advanced BCP. The following algorithmic
elements based on packing sets are used to solve the models described in this article.

2.3.1 Limited-Memory Rank-1 Cuts

The Rank-1 Cuts (R1Cs) [27] are a generalization of the Subset Row Cuts proposed by Jepsen et
al. [21]. In the VRPSolver context they are further generalized as follows. Consider a collection
of packing sets B and non-negative multipliers pg for each B € B. A Chvétal-Gomory rounding

of constraints (3) yields:
I DOPS S P ) or ] 0

peP LBeB acB BeB



R1Cs are potentially strong, but each added cut makes the pricing subproblems significantly
harder. The limited memory technique [26] is essential for mitigating that negative impact.

2.3.2 Path Enumeration

The path enumeration technique was proposed by Baldacci et. al. [3], and later improved by
Contardo and Martinelli [8]. Tt consists in trying to enumerate into a table all paths in P that
can possibly be part of an improving solution. After a successful enumeration, the corresponding
pricing subproblem can be solved by inspection, saving time. If the enumeration has already
succeeded and the total number of paths in the tables is not too large (say, less than 10,000) the
overall problem may be finished by a standard MIP solver, which often saves a lot of time.

From time to time, VRPSolver tries to enumerate all paths p without more than one arc in
the same packing set, and with reduced cost ¢(p) smaller than the current gap UB — LB, where
UB is the best known integer solution cost, and LB the value of the current linear relaxation.
Moreover, if two paths p and p’ lead to variables A, and A}, with identical coefficients in (2b)—(2c),
the one with larger cost is dropped.

2.3.3 Branching

Branching over z and y variables (or over linear expressions defined over them) is simple and
does not change the structure of the pricing subproblem. In many models this is sufficient for
correctness. For example, in a Capacitated VRP model where z;; variables indicate whether
a vehicle travels from point ¢ to point j (like in [31]), if all « variables are integer then they
correspond to a correct solution, there is no need to even check the integrality of the A vari-
ables. However, there are models, including all in this paper, where this does not happens and
constraints (1e) need to be explicitly enforced. Branching over individual A variables should be
avoided due to a big negative impact in the pricing and also due to highly unbalanced branch
trees [40].

VRPSolver has the option of branching using a generalization of the Ryan and Foster rule
[34]. Choose two distinct sets B and B’ in B. Let P(B, B’) C P be the subset of the paths that
contain arcs in both B and B’. The branch is over the value of > p 5. pr) Ap- The branch trees
are much more balanced. However, Ryan and Foster branching scheme changes the structure of
the pricing subproblem, sometimes increasing a lot its difficulty.

VRPSolver also implements a branching scheme similar to the one proposed by Gélinas et
al. [15] for time constrained routing problems. It can be described as follows. Assume that all
consumptions and accumulated consumption intervals are integer. For a chosen B € B, r € R
and for a certain threshold value ¢t*: in the left child make u,, = t* — 1, for all a € B; in the
right child make [, , = t*, for all @ € B. In other words, the branch is over the accumulated
consumption of resource r on arcs in B. This branching has the nice feature of not increasing the
pricing difficulty. However, it is not sufficient for general Formulation (1), since some fractional A
solutions can not be eliminated by it. The main theoretical contribution of this paper (in Section
4) is a proof that the branching scheme over accumulated resource consumption is sufficient for
the proposed bin packing models.

3 VRPSolver Models for Bin Packing problems

Now we present the specific VRPSolver models corresponding to each of the problems addressed
in this paper.



3.1 Vector Packing (VPP) / Bin Packing (BPP)

The following model is valid for the VPP, the classic BPP corresponds to the case where |D| = 1:

VRPSolver Model for VPP: Graph G = (V, A), where V = {v; : i € T U {0}}
and A = {a;4 = (vi—1,v3),ai— = (vi—1,0;) 1§ € I}; Usource = V0, Vsink = vz; R = D;
Qajs,d = wf,qai_,d =0,i€l,d € D;[lggtad = [0,Q%, a € A,d € D. Continuous
variables x;, i € I U{0}. The formulation is:

Min Zo (5a)

M(zo) = {a14,a1-}, M(x;) = {a;+},i € I; L =0, U = 0. B = Ujer{{ai+}}

Branching over accumulated resource consumption.

The path generator graph is depicted in Figure 1. For each item ¢ € I, there is an arc a;4 with
consumptions wfl, d € D, and another arc a;_ with zero consumptions. It can be seen that there
is a one-to-one correspondence between resource constrained paths in P and solutions of the
| D|-dimensional binary knapsack problem defined by {z € {0,1}* : Y., wéz! < Q4,d € D},
that also correspond to the possible ways of packing items into a bin. Variables z;, ¢ € I, indicate
if item 7 is packed. As all items must be packed, they are fixed to 1 in (5b). Each variable z;
is mapped to arc a;4. So, Constraints (5b) are equivalent to saying that the solution should
contain exactly one path in P passing by each arc a;. Variable x( is mapped to both a;4 and
a1—. As every path in P passes by exactly one of those arcs, zq is put in the objective function
(5a) for counting the number of used paths (bins).

al— as— as— arz—

Figure 1: Path generator graph for VPP /BPP.

Consider the BPP instance with Z =4, wy =7, we =8, w3 =9, wy = 11, and Q = 17. The
set P has 8 paths: py = (a1-,a2—,a3_,a4_), p2 = (a14,a2_,a3_,a4_),p3 = (a1, a24,a3_,a4_),
Py = (a’l—a a2—, A3+, a4—)7 ps = (CL1_7 az—,asz—, CL4+), Pe = (a1+a ag+, 43—, a4—)7 pr = (a’1+7 ag—, a3+, a4—)7
ps = (a1—, as4,as4,aq—). The complete formulation (corresponding to Formulation (1)) for that
instance is:

Min Zo (6a
S.t. x; =1, (6b
xq =1, (6¢
x3 =1, (6d
T4 =1, (6e
To = A+ A2+ A3+ A+ X5 + X6 + A7 + Ag, (6f

T1 = A2 + Ae + A7,
To = A3 + g + s,

o
(2=
= 09
L 2220 2 22D

T3 = Mg+ A7+ g, (6i
T4 = As, (6]
0< A+ A2+ A3+ X+ X5+ X6 + A7 + s, (6k
NeZS (61

A possible optimal solution to (6) would have Ay = A5 = Ag = 1 (the corresponding paths are
depicted in Figure 2) and the remaining A variables equal to zero.



Eliminating the x variables and relaxing the integrality, the master LP (corresponding to
(2)) that should be solved by column generation is obtained:

Min A+ Ao+ A3+ s+ As + Ag + A7+ Ag (7a)
S.t. X+ Xg+Ar=1, (7b)
As+Ag+As =1, (7¢)
M4 Ar+ s =1, (7d)
A5 =1, (7e)
A>0 (7f)
as+(9)
O_0_ QO O 0O -
a1 (0) as_(0) as_(0)
asq(11)
O__ 0O O & ® si-n
a1_(0) as_(0) as_(0)
a14(7) az+4(8)
@ O Q. e O su-w
as_(0) as_(0)

Figure 2: Paths used on an integer solution of (6). The arc consumptions and the accumulated
resource consumption at the end of each path are also indicated.

3.2 Variable Sized Bin Packing with Optional Items (VSBPPOI)

We present the model for the more general VSBPPOI, the model for the VSBPP without optional
items is easily obtained by setting sufficiently large penalties or by removing some variables from
the model.

VRPSolver Model for VSBPPOI: Graph G = (V, A), where V. = {v; : i =
O,. .. ,I+ 1} and A = (Al = {CI,H_ = (vi_l,vi),ai_ = (’Ui_l,’Ui) = 1, ce ,I}) @] (AQ =
{ak = (UI7UI+1) ke K})a Usource = V0, Usink = UZ41; R= {1}7 Qa;p1 = Wiy da;_1 =
O,i S I,qk,l = O,k S K, [la71,ua71] = [O,Qmax], a € Al, where Qmax = MaXicK Qk,

(lap1sUap,1] = [0,Qk], k € K. Integer variables x; and s;, ¢ € I; integer variables zy,
k € K. The formulation is:
Min Y crzi + D pisi (8a)
keK i€l
2k < ug, ke K, (8C)
s >0, (ASE (8d)

M(z;) = {ai+},i € I; M(z) = {ax}, k€ K; L=0,U = o00. B=Uer{{ai+}}. We
first branch on expressions }_;c; s; and } ;o i “52;, where g is the greatest common
divisor of {cg}trer. If both these expressions are integer, we branch over s and z
variables as well as over accumulated resource consumption.

The path generator graph is depicted in Figure 3. The graph differs from that in the previous
BPP/VPP model by having one more vertex and extra arcs ag, k € K. The paths in P passing



by an arc aj are associated to the possible packings in bin type k. Each variable z;, ¢ € I,
mapped to arc a;, indicates if item i is packed. Unlike in the previous model, those variables
are not fixed to 1. Each variable zj, k € K, mapped to arc aj, counts how many bins of type k
are used in the solution. Variables s are not mapped.

ai
vo A1+ . A2+ py A3+ p3 vz—1 AT+ wr VT+1
OO0 020 =
as
al— az— asz— ar—

Figure 3: Path generator graph for VSBPPOI with three bin types.

The expression ), ; s; corresponds to the number of items that are not packed. Branching
on the value of that expression can only be applied on VSBPPOI instances. The expression
Y okek %’“zk is proportional to the total cost of the bins used in the solution. On VSBPP instances
(without optional items), branching down on the value of this expression yields an infeasible left
child node; in the right child the node lower bound is certainly increased at least to the next
multiple of g. The rounding up of lower bounds to the next multiple of the greatest common
divisor of the bin costs is standard in published VSBPP algorithms. Even on VSBPPOI instances,
where the left child is feasible, this branching is usually quite good in increasing lower bounds.

4 Branching over Accumulated Resource Consumption

The classic lower bound for the BPP by Gilmore and Gomory [16] is obtained by column gener-
ation, solving binary knapsack problems in the pricing. The problem is (weakly) NP-hard, but
there are some advanced knapsack algorithms that perform very well in practice [32]. However,
implementing a BP algorithm over Gilmore and Gomory can be tricky.

Branching directly over the variables of the model (as done in [5]) leads to very unbalanced
search trees, fixing a variable corresponding to a certain packing of items to a bin to one is strong,
but fixing it to zero is much less likely to move the lower bounds. Moreover, fixing variables to
zero change the structure of the pricing, each fixing making it harder.

Another alternative, first used in [39], is to apply Ryan and Foster scheme [34], choosing a
pair of items ¢ and j. In the left child, ¢« and j should be packed in the same bin. This does
not change the pricing structure, the items are simply merged into a single item. In the right
child, 7 and j can not be packed in the same bin. This changes the structure of the pricing, that
becomes a binary knapsack with conflicts, which is a strongly NP-hard problem.

The BPP model presented in Section 3.1 is equivalent to Gilmore and Gomory model, however
VRPSolver uses the Resource Constrained Shortest Path problem as pricing subproblem. RCSPs
are solved using a labeling algorithm (see [35] for details), which is a dynamic programming
where reachable states are represented as labels. The practical efficiency of a labeling algorithm
depends on the concept of dominance. Let Ly and Lo be the labels corresponding to partial paths
p1 and po in G, starting in vspurce and ending at the same vertex v of V. If the accumulated
resource consumption of p; is not larger than the accumulated resource consumption of py (for
all » € R) and the reduced cost of p; is smaller than the reduced cost of po, then label Lo is
dominated by L; and can be removed. This dominance rule is correct because every extension
of ps into a complete path in P, if applied to p;, would produce a complete path in P with
smaller reduced cost. We remark that the “smaller-consumption-is-better” rule works because
the RCSP definition permits resources to be disposed, if this is needed to satisfy lower bounds
on accumulated consumption.

A potential advantage of solving the pricing subproblem as a RCSP is that the branching
over accumulated resource consumption, which never changes the pricing structure, can be used.
That branching scheme was proposed by Gélinas et al. [15] for time constrained routing problems.
However, the authors did not prove its sufficiency. In fact, they proposed using a second



branching scheme for the cases when the current fractional solution could not be eliminated by
branching over accumulated resource consumption in both children nodes. The main theoretical
result of this work is Theorem 1. For the sake of simplicity, it is stated only for BPP. However,
we will show later that the sufficiency result also holds for all models in Section 3.

Definition 1. A branching is effective if it cuts the current fractional solution in both child
nodes.

Definition 2. A branching scheme is sufficient if, given a fractional solution, it provides either
an effective branching or a polynomial algorithm to convert that fractional solution into an integer
solution with the same cost.

Consider as example the instance described in Section 3.1 and its linear relaxation (7), having
solution A5 = 1, \¢ = A7 = Ag = 0.5, the remaining variables with value zero. The accumulated
resource consumptions for the paths associated to the fractional variables are: Sffl =1, 55,61 =
ngl = Sfffl =15, Sffl = 55)71 =1, 5313,71 = S’ffl =16, Sf,sl =0, Sé’i =38, 55)81 = Sffl = 17. It is not
possible to branch effectively over item 3, corresponding to arc asy. This arc appears in paths
pr and pg. Choosing t* = 17, we would have intervals [0,16] and [17,17] for the accumulated
resource consumption of arc as; in the left and right child nodes, respectively. The first interval
would indeed eliminate pg, but the second would eliminate neither p; (because 1 unit of resource
can be dropped to make ngl = 17) nor ps. On the other hand, it is possible to branch effectively
over item 2. Choosing t* = 10 would give intervals [0,9] and [10,17] for as. The first interval
would eliminate pg, while the second would eliminate pg. So, the fractional solution would be
cut in both branches.

Lemma 1. Suppose that one sets tight intervals on accumulated resource consumption for all
items, that is, lq,, 1 = Uq,, 1, % € I. The linear relaxation of the BPP model (corresponding to
(2) ) restricted to the paths in P that respect those tight intervals has an optimal integer solution.

Proof. Define the following Minimum Cost Flow Circulation (M CFC') problem over graph H =
({0,...,2T + 1}, F), where F = {(0,2i — 1), (2i — 1,2i), (20,2 + 1 : i € I} U {(2i1, 2 — 1) :
i1yi2 € I, i1 <'iz, la,  +wiy <la,, JU{(2Z+1,0)}. All arcs in F’ cost zero, except by (2Z+1,0)
that costs 1. The flow f, in each arc a € F' can assume any non-negative value, except by arcs
in {(2¢ —1,2¢) : ¢ € I} where the flow is fixed to 1. Let z(MCFC) be the optimal solution
value of MCFC. Let BPPrp(P’) be the linear relaxation of the BPP model restricted to P,
the subset of P formed by the paths that respect the tight intervals. Let z(BPPrp(P’)) be its
optimal solution value.

There is a one-to-one correspondence between paths in P’ and cycles in F. Let A be an
optimal solution (integer or fractional) of BPPpp(P’). Start with zero flow for all arcs in F.
For each p € P’, add the value ), to the flow of all arcs of the cycle in F corresponding to
p. The resulting flow is a solution of MCFC with value z(BPPrp(P’)). Conversely, a cycle
decomposition of an optimal solution of MCFC' yields a solution of BPPp(P’) with value
z2(MCFC). So, z2(BPPyp(P")) = z2(MCFC). Moreover, the Flow Integrality Theorem asserts
that MCFC has an optimal solution where all flows are integers. That integer solution will
yield an optimal integer solution for BPPpp(P’). O O

In order to exemplify Lemma 1, consider the same BPP instance from Section 3.1 and suppose
that intervals are set to [8,8], [8,8], [17,17] and [14,14], for items 1, 2, 3 and 4, respectively. Graph
H is depicted in Figure 4, P' = P\ {ps}, and z(BPPLp(P’)) = 2(MCFC) = 3. A minimum
cost integer flow circulation is has arcs fo1, fi2, fo5, f56, f69, fo3, [34, fa9, fo7, frs, and fgg with
value 1 and fgg = 3. This flow corresponds to an integer solution having A3 = A5 = A7 = 1.

Theorem 1. The branching scheme over accumulated resource consumption is sufficient for the

VRPSolver Model for BPP.

Proof. In this context, a branching over an item 4 € I and threshold value t* is effective if there
exists a pair of paths p; and p, passing by a;;, where A,, and \,, have positive value in the
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consumption
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17

Figure 4: Example of a network obtained from a BPP instance with tight consumption bounds

current fractional relaxation, and such that: if u,,, 1 is set to t* — 1 (left child) then p; remains
feasible but pp not; if I, 1 is set to t* (right child) then p, remains feasible but p; not. Assume
that there is no effective branching. This means for each item ¢ € I and for every threshold ¢*, all
paths (including, of course, the paths that do not pass by a;4) with positive fractional variable
would remain feasible either in the left or in the right child. Consider some ¢ € I, and let ¢}*
be the maximum threshold such that all those paths would remain feasible in the right child,
threshold ¢;* + 1 would make all those paths to be feasible in the left child. This means that
all paths with positive fractional value are feasible for both intervals [0,¢*] and [tI*, Q] on the
accumulated consumption of a;4, so they are all feasible for tight interval [t7*,¢*]. Repeating
the reasoning for each ¢ € I, one at a time, we can conclude that all paths with positive fractional
value would remain feasible even if all intervals are tightened to [¢*,¢*]. Then, by Lemma 1, the
current fractional solution has the same cost of an optimal integer solution. In fact, in order to
obtain that solution itself it may be necessary to solve (in polynomial time) the M CFC instance

defined in the proof of Lemma 1. O O

We now sketch how to adapt the above proof for obtaining similar sufficiency results for the
other variants considered.

e The branching scheme over accumulated resource consumption is also sufficient for the more
generic VRPSolver Model for VPP. The reasoning in Lemma 1 and Theorem 1 remains es-
sentially the same, showing that a fractional solution without an effective branching would
also be a solution to a restricted problem where the intervals on accumulated consumption
associated to each item i € I are tight for each resource d € D.

e The same branching scheme also suffices for the VRPSolver Model for VSBPP. The proof
only differs in Lemma 1, where graph H would have vertex-set {0, ...,2Z + K} and arc-set
F={(0,2i—1),(20—1,2i) : i € I[YU{(2i,2Z+k): k€ K,i € I,lo,, 1 < Q1}U{(2i1,2is) :
11,00 € I, 11 < 19, lai1+71 + w;, < lai2+,1} U {(QI—I— ]41,0) ke K} Arcs (QI—F k’,O), ke K
would have flow capacity u, and cost cy.

e Finally, the branching scheme for the VRPSolver Model for VSBBPOI of branching over
z variables and over accumulated resource consumption is sufficient. This is true because
if all z variables are integer, then the same proof used for the VSBPP guarantees the
existence of an effective branching over accumulated resource, unless the current fractional
solution can be converted into an integer solution with the same cost.
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5 Computational Experiments

The models presented in Section 3 were implemented on VRPSolver [31, 30], available for free
academic use at https://vrpsolver.math.u-bordeaux.fr. VRPSolver solves RCSP pricing
subproblems with the bucket graph based labeling algorithm proposed in [35] and applies auto-
matic dual price smoothing stabilization [29]. CPLEX 12.8 is used for solving linear programs
and MIPs. The experiments were run on a 2 Deca-core Ivy-Bridge Haswell Intel Xeon E5-2680
v3 server running at 2.50 GHz. The 128 GB of available RAM was shared between 8 copies
of the algorithm running in parallel on the server. Each instance is solved by one copy of the
algorithm using a single thread.

5.1 Bin Packing Problem

For the experiments on the BPP we use the hardest (according to [11]) classes of literature
instances: “Falkenauer T” [13], “Wascher” [41], “Hard28” [37], as well as “AI” and “ANI”
instances recently proposed in [11].

The default parameterization of VRPSolver (see [30]) is changed in the following way:

e The number of buckets per vertex is set to 200, and it is not dynamically adjusted.

e The bidirectional variant of the labeling algorithm is applied when solving the pricing both
heuristically and exactly.

e At most 100 columns are generated at every iteration of column generation.

e When applying the path enumeration technique, the number of enumerated paths is limited
to 2-109, i.e. path enumeration is interrupted if this number is exceeded.

e The node is finished by the MIP solver if the number of enumeration paths is less or equal
to 10°.

e 3- and 4-row limited-memory rank-1 cuts are separated, i.e. they are obtained by Chvatal-
Gomory rounding of 3 and 4 constraints (3), respectively.

e The cut generation tailing-off threshold is set to 5, i.e. the cut generation is stopped when
the primal-dual gap is decreased by less than 2% after 5 cut separation rounds.

e The safe lower bound technique similar to the one proposed in [18] is applied to assure the
validity of the column generation bound.

e At most 20 branching candidates are considered during the strong branching.

For each instance, we use initial primal bound which is equal to the rounded up value of the
column generation lower bound plus 1 unit. There is a long-standing conjecture that the optimal
solution value of a BPP instance is never larger than this. Solutions with these objective values
are easily obtainable by simple heuristics. The pure diving heuristic [36] is used to improve
initial primal bound. It is executed at every node of the search tree unless its depth is greater
that 10.

We compare the results of VRPSolver with the best approaches in the literature. These are
the following;:

BelSch06 branch-cut-and-price algorithm proposed in [5] and executed at an Intel Xeon 3.10
GHz processor in [11]

Dellori20 enhanced pseudo-polynomial formulation proposed in [10], also executed at an Intel
Xeon 3.10 GHz processor,
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WLBL20 branch-cut-and-price algorithm proposed in [42] and executed at an Intel Xeon E5-
1603 2.80 GHz.

The results are shown in Table 1. In the first column, the name of the data set is given. Second
column gives the number of items in the instances of this data set. Then for each algorithm,
we show the number of instances solved within the time limit and the average solution time.
The time limit is 10 minutes for the first three classes of instances, and 1 hour for instances
in classes Al and ANI. For unsolved instances, the solution time is set to the time limit. We
mark in bold the best results for each data set, considering first the number of solved instances
and then the average time in case of ties. It can be seen that VRPSolver is able to solve

VRPSolver BelSch06 Dellori20 WLBL20
Data set # Items| Opt. Time Nodes| Opt. Time| Opt. Time| Opt. Time
Falken.T  60-501 | 80/80 22 1.0 | 80/80 56 | 80/80 180/80 2
Wiischer  57-239 | 17/17 91  1.0|17/17 1|17/17  41|17/17 16
Hard28  160-200 | 28/28 14 1.3]28/28 81]28/28 4(27/28 9

Al 201| 50/50 72 3.8|50/50 144 |50/50 9]50/50 4
402|47/50 403  14.3|45/50 699 |40/50 1205|45/50 398
600 | 35/50 1458  4.8|21/50 2539 - —]27/50 1760
801|22/50 2918  2.3| 0/50 3600 - —1]15/50 2766
1002| 0/50 3600 1.0 - - - —|2/50 3546
ANI 201| 50/50 17  1.3|50/50 144|50/50  50|50/50 14

402 | 50/50 96 1.3| 1/50 3556 |47/50 2704|45/50 436

600 1/50 3565 10.8| 0/50 3600 0/50 3600
801| 0/50 3600 1.8| 0/50 3600 — —| 0/50 3600
1002 | 0/50 3600 1.0 — — — —| 0/50 3600

Table 1: Comparison of VRPSolver with best approaches from the literature on BPP instances

more instances to optimality than any other algorithm. However, the average solution time is
significantly worse than competitors for the first three classes of instances. For the two most
difficult classes Al and ANI, our approach clearly showed the best results. Algorithm WLBL20
is close to VRPSolver both in terms of the number of solved instances and the solution time
in seconds. This is not surprising as WLBL20 is a branch-cut-and-price algorithm similar to
the one used in VRPSolver, but with a specialized implementation. The main differences are
that VRPSolver i) uses bi-directional labeling algorithm for the pricing problem, ii) employs
stabilization and enumeration, iii) uses 3- and 4-row limited-memory rank-1 cuts, whereas WLB
uses only 3-row full-memory cuts, and iv) uses branching over accumulated resource consumption
instead of Ryan&Foster branching.

The bottleneck of our algorithm for solving instances of classes Al and ANI with 600 items or
more is the LP solver numerical tolerance. For such instances, sometimes a column added to the
master problem does not enter in the basis, in spite of having a negative reduced cost according
to the current optimal dual solution provided by CPLEX. This may happen even if the reduced
cost tolerance in CPLEX is set to its minimum value 10~°. In those cases, the column generation
procedure is stopped and the safe Lagrangean bound is used. The safe bound is a only a little
weaker than the potential bound that would be obtained by solving the master LP to the end.
Yet, this may make a lot of difference. It is quite frequent on those hard BPP instances that the
lower bound of a node is very close to be one unit away from the primal upper bound. The use
of a slightly worse lower bound may be enough to prevent the pruning of that node.

In Table 2, we compare branching over accumulated resource consumption and Ryan and
Foster branching. The comparison is done on classes of instances for which average number of
nodes is greater than one, i.e. branching is needed for at least one instance in the class. It
can be seen that one can solve more instances when employing the branching over accumulated
resource consumption, and the average solution time is also decreased. The main reason is that
Ryan and Foster branching is “non-robust”. Additional binary resources should be added to
the resource constrained shortest path pricing problem to take into account Ryan and Foster
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Res. cons. branching | Ryan&Foster branching

Data set  # Items Opt. Time Nodes | Opt. Time Nodes
Hard28 160-200 | 28/28 14 1.3 | 28/28 15 14
Al 201 | 50/50 72 3.8 | 50/50 70 2.6
402 | 47/50 403 14.3 | 43/50 668 3.0

600 | 35/50 1458 4.8 | 34/50 1530 2.9

801 | 22/50 2918 2.3 | 21/50 2932 1.5

ANI 201 | 50/50 17 1.3 | 50/50 17 1.2
402 | 50/50 96 1.3 | 50/50 116 1.7

600 1/50 3565 10.8 | 1/50 3568 7.9

801 0/50 3600 1.8 | 0/50 3600 1.6

Table 2: Comparison of branching strategies

branching constraints. Thus the pricing problem takes significantly more time to be solved, and
less nodes can be explored within the time limit.

RCSP pricing Knapsack pricing
Data set  # Items | Time Iters. Cols. | Time Iters. Cols.
Falken. T 60-501 6 84 7180 2 597 688
Wischer 57-239 12 87 8045 3 495 519
Hard28 160-200 4 91 7443 2 654 749
Al 201 12 159 14228 4 979 1061

402 (0] 319 29137 33 2227 2397
600 277 561 52353 117 3313 3564
801 | 1132 993 94073 322 4051 4835
ANI 201 13 161 14023 4 1042 1125
402 76 318 28582 33 2282 2453
600 286 554 51049 117 3355 3607
801 | 1146 993 93886 322 4550 4884

Table 3: Comparison of pricing algorithms for solving the first linear relaxation

The first linear relaxation of the BPP model (corresponding to (2)), before cuts are added
or branching is performed, is equivalent to Gilmore and Gomory relaxation and can be solved
using a knapsack algorithm in the pricing. Table 3 presents a comparison of solving that first
relaxation by using the VRPSolver RCSP labeling algorithm in the pricing with the use of a
high-performance specialized algorithm for the binary knapsack problem. For the latter we
have chosen the algorithm by Pisinger [33]. We skip instances with 1000 items as for some of
these instances, the column generation algorithm did not converge in 1 hour when the pricing is
solved by the labeling algorithm. The first two columns are as in the previous tables. Then in
next columns, for each algorithm, we show the average solution time, average number column
generation iterations, and the average number of generated columns. As can be seen, using a
specialized algorithm for the knapsack problem makes that column generation procedure two
to four times faster. The number of iterations is larger as at most one column per iteration
is generated. When using the labeling algorithm, at most 100 columns are generated on every
iteration. However, each iteration, including the solution of a larger LP, is much more expensive.

In spite of being less efficient for the first column generation, the use of the labeling algorithm
for the RCSP in the overall branch-cut-and-price algorithm still has many advantages, allowing
the use of important algorithmic elements: rank-1 cuts, path enumeration and branching over
accumulated resource consumption. However, a hybrid pricing strategy that uses Pisinger’s code
for the first column generation, while the subproblem structure is still a knapsack, would indeed
save some time. In some cases the saving would be significant. For example, for the Al instances
with 201 items the average total time would decrease from 17 to 6 seconds. We preferred not
do that in our main experiments because the publicly available version of the VRPSolver does
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not have the feature of using external algorithms for the pricing, its users would not be able to
reproduce the reported results.

Another note concerns the set-partitioning constraints (5b). It could be advantageous to
define set-covering constraints of format x; > 1 instead, so the dual variables would never be
negative. However, our preliminary experiments showed that the solution time of the first column
generation would be reduced by only 10-20%, due to the fact that VRPSolver already uses a
strong stabilization mechanism. No gains were observed in the remaining of the algorithm, after
cuts, enumeration, diving heuristics or branching starts to be performed. Thus, the overall
improvements were not significant. We prefer to keep the set-partitioning constraints because
they are more intuitive to the average VRPSolver. For similar reasons, the dual cuts from [38]
do not improve results significantly and were not used in the reported experiments.

A last note concerns the item ordering in the path generator graph (see Figure 1). In our
tests, the items followed the order in which they appear in the original instance files, sorted in
non-increasing order of weights. We have experimented with two different orders: a random
order and the alternating order, in which the first item (the one with largest weight) goes first in
the graph, the second item (the second largest weight goes last in the graph), the third item goes
second in the graph and so on. These experiments show that the item ordering does not have
any significant impact on the results. The reason is that the number of non-dominated labels
in the exact labeling algorithm during the first column generation convergence is close to Z.9,
the number of states in the standard dynamic programming algorithm for the binary knapsack
problem. Therefore, there is no sparsity to be explored by changing the order of items.

5.2 Vector Packing Problem

For the experiments on the VPP we use classic 2-dimensional instances generated in [7]. These
instances have from 25 to 200 items. We have also used the 20-dimensional instances obtained
in [6] by aggregating ten 2-dimensional ones. The parameterisation of VRPSolver is similar to
the one used for the BPP instances except by the following changes.

e The number of buckets per vertex is set to 2000 in the labeling algorithm.

e A labeling heuristic is used for the heuristic pricing in which each bucket contains at most
8 non-dominated labels.

e Rank-1 cuts are not generated.

e When applying the path enumeration technique, the number of labels is limited to 10°. If
this number is exceeded, the path enumeration is interrupted.

We do not use initial upper bounds. In order to obtain primal solutions, the diving heuristic
embedded in VRPSolver is used only at the root node, with Limited Discrepancy Search [36]
having parameterisation y°Pth = 2 ydis¢ = 3 which ensures that at most 10 dives are performed.

We compare the results of VRPSolver with the best results in the literature. These are the
following:

BraPed16 graph compression and arc-flow model based approach proposed in [6] and executed
at a Quad-Core Intel Xeon 2.66 GHz processor,

HesGscIrnl8 stabilized branch-and-price algorithm, using a labeling algorithm for RCSP in
the pricing, proposed in [19] and executed at an Intel i7-5930k 3.5GHz processor.

WLLH20 branch-and-price algorithm proposed in [43] only for the 2-dimensional case, using a
specially tailored 2-D binary knapsack algorithm for the pricing subproblem, executed at
an Intel i7-6700 3.40GHz processor.
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VRPSolver BraPed16 | HesGscIlrnl8 | WLLH20
Class # Items| Opt. Time Nodes| Opt. Time| Opt. Time | Opt. Time
1 100 | 10/10 29 1.0{10/10 67110/10 408110/10 1
1 200(10/10 164 1.0{10/10 7602 | 3/10 2899 | 10/10 8
2 200 |10/10 72 1.0|10/10 7 10/10 1 10/10 1
4 100 | 10/10 41 1.0 — —110/10 305|10/10 1
4 200(10/10 270 1.0 — —| 3/10 2973|10/10 5
5 100 |10/10 59 1.0 — —110/10 386 |10/10 1
5 200(10/10 785 1.0 — —| 7/10 2567 (10/10 1
6 100 |10/10 28 1.0|10/10 1]/10/10 1]/10/10 1
6 200 10/10 163 1.0|10/10 5(10/10 15|10/10 1
7 100 | 10/10 17 1.0|10/10 2110/10 2110/10 1
7 200|10/10 113 1.0|10/10 14|10/10 24110/10 1
8 200 [ 10/10 18 1.0|10/10 1{10/10 1{10/10 1
9 100 | 10/10 36 1.0|10/10 28 110/10 360 |10/10 1
9 200| 8/10 961  44.4 — —| 0/10 3600 | 1/10 3541
10 200 |10/10 140 1.0/10/10 155| 7/10 1675|10/10 18

Table 4: Comparison of VRPSolver with best approaches from the literature on the vector
packing instances with 2 dimensions

In Table 4 we present the results for classes of 2-dimensional instances for which the average
VRPSolver solution time was more than 10 seconds. In the first column, the data class is given.
Second column gives the number of items in the instances. Then for each algorithm, we show
the number of instances solved within the 1 hour time limit and the average solution time in
seconds. For unsolved instances, the solution time is set to the time limit.

VRPSolver clearly outperforms approaches BraPed16 and HesGscIrn18. The most recent
algorithm WLLH20 is by far the fastest in almost all instances. However, VRPSolver solved
the largest number of instances, including 3 open instances in class 9 with 200 items. In [43],
another algorithm could solve 5 instances in class 9 with 200 items. It can be seen in Table 4
that the other classes of instances are “easy”, in the sense that all their instances are solvable in
root node, without need for cutting or branching.

Class # Items | VRPSolver | BraPed16 | HesGsclrn20
1 100 11 36 39
1 200 510 1374 2142
4 50 1278 3600 3600
4 100 3600 3600 3600
4 200 3600 3600 3600
5 25 28 73 2021
5 50 3600 3600 3600
5 100 3600 3600 3600
5 200 3600 3600 3600
9 200 131 — 3399
10 200 159 14 279

Table 5: Comparison of VRPSolver with best approaches from the literature on the vector
packing instances with 20 dimensions

In Table 5 we present the results for 20-dimensional instances for which the VRPSolver
solution time was more than 10 seconds. In the first column, the data class is given. Second
column gives the number of items. Then for each algorithm, we give the solution time. The
instance is solved to optimality if the time is less than 3600 seconds. VRPSolver is the fastest
approach for the instances shown, and it solved the largest number of instances to optimality,
including one open instance. All instances are solved at the root node without branching. For
non-solved instances, the column generation procedure did not converge in one hour due to a
large difficulty of the pricing problem.
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As for the BPP, we have experimented with different orders of items. Contrary to the bin
packing, item order has an impact on the solution time when solving VPP instances. However,
this impact was not radical during our preliminary experiments. Moreover, we do not have any
good prediction mechanism based on the instance data to decide which order is better and which
one is worse. Therefore, for the final experiments, we use the same order in which items appear
in original instances.

5.3 Variable Sized Bin Packing Problem

For the experiments on the VSBPP we use classic instances generated according to the procedure
described in Monaci [23]. In addition we use instances of VSBPPOI proposed in [4]. These
instances are obtained by modification of instances from [23]. There are 4 classes of instances:
class 0, class 1, class 2, and class 3. In instances in class 0, all items are compulsory. These
instances are generated in the same way as the original Monaci instances. In instances in classes
1 and 2, all items are optional. Instances in the first three classes contain from 25 to 500 items.
In instances in class 3, there is mixture of compulsory and optional items. This class contains
only instances with 500 items. All instances has been generated in [4].

The parameterisation of VRPSolver is similar to the one used for the bin packing instances
except the following changes.

e When applying the path enumeration technique, the number of enumerated paths is limited
to 2- 109, and the number of generated labels is limited to 2 - 10°.

e The node is finished by the MIP solver if the number of enumerated paths is less or equal
to 5,000.

We do not use initial upper bounds, but feasible solutions are obtained by the heuristic with
Limited Discrepancy Search heuristic [36] with the same parameterization as for the vector
packing instances. We compare the results of VRPSolver with those obtained by the branch-
and-price algorithm proposed in [4], which we denote as BCPT14, executed at a Pentium IV
3.0 GHz processor.

In Table 6 we present the results for the instance classes 0, 1, and 2. In the first column,
the data class is given. Second and third columns give the number of bin types and the number
of items. Then for each algorithm, we show the number of instances solved within the 1 hour
time limit, the average solution time in seconds, and the average number of nodes. For unsolved
instances, the solution time is set to the time limit.

VRPSolver clearly outperforms the approach BCPT14, both in terms of the solution time
and the number of solved instances. Note that instances in class 0 with only compulsory items
seem to be solved much more efficiently by the older approaches proposed in [1] (all 300 instances
solved, all average times less than 1 second) and in [17] (only two unsolved instances). We did
not include their results in the Table 6 because those authors used similarly generated instances,
not the original instances of [23]. Anyway, it seems that the branch-cut-and-price in [1] for
the multiple length (assumes that the cost of a bin type is given by its capacity) cutting stock
problem is particularly better for that kind of instances due to their cutting stock structure.
Monaci’s generation scheme creates instances with only 20 to 100 distinct weights. Solving such
instances using a bin packing code like the one in BCPT14 and in our VRPSolver model, leads
to unnecessary large LPs and symmetry in the branching.

In Table 7 we present the results for the instance class 3 with 500 items. In the first column,
the percentage of compulsory items. Other columns are the same as in Table 6. One can see
again that VRPSolver clearly outperforms the approach BCPT14.
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VRPSolver BCPT14
Class # Types # Items Opt. Time Nodes | Opt. Time Nodes
0 3 25 | 30/30 1 1.5 | 30/30 1 5.0
50 | 30/30 3 4.8 | 30/30 1 26.3
100 | 30/30 24 11.5 | 28/30 81 1190.9
200 | 28/30 268 43.5 | 19/30 1057 4107.8
500 | 28/30 454 5.5 | 13/30 2165  901.7

) 25 | 30/30 1 1.0 | 30/30 1 9.9
50 | 30/30 2 2.3 | 30/30 1 13.1
100 | 30/30 6 1.4 ] 29/30 147 776.5

200 | 30/30 21 1.3 ]22/30 681 2970.3

500 | 28/30 395 6.3 | 16/30 1908 1008.8

1 3 25 | 30/30 1 1.2 | 30/30 1 138
50 | 30/30 4 47130/30 22 1887

100 | 29/30 152 39.5 | 19/30 963 3297.9

200 | 30/30 366  90.9 | 21/30 1116 3607.3

500 | 23/30 1101 1335 | 10/30 2561 1099.8

5 25 | 30/30 1 1.4 | 30/30 9 100.1
50 | 30/30 3 51 (30/30 46  429.7

100 | 30/30 57 452 | 24/30 626 1939.0

200 | 29/30 327 784 | 18/30 1199 4322.9

500 | 25/30 927  54.8 | 14/30 2054 9335

2 3 25 | 30/30 1 1.1 | 30/30 1 132
50 | 30/30 6 59 | 28/30 223 797.3

100 | 30/30 18 135 | 22/30 745 2246.1

200 | 29/30 362 852 | 19/30 1209 4593.0

500 | 22/30 1355  406.9 | 11/30 2404 1030.8

5 25 | 30/30 1 1.2 | 30/30 2 231
50 | 30/30 3 6.3 |28/30 107  726.7

100 | 30/30 35  27.8 [ 23/30 861 1974.0

200 | 30/30 194  43.1 | 22/30 1084 3462.6

500 | 19/30 1614 134.1 | 16/30 1960  836.5

Table 6: Comparison of VRPSolver with the approach from [4] on the variable size bin packing
instances in classes 0, 1, and 2

6 Conclusions

This paper proposes branch-cut-and-price algorithms for the bin packing problem and for some
of its well studied variants, defined as VRPSolver models. This is quite convenient, each model
is coded in about 50 lines of Julia language using the package JuMP.jl [12]. Here we do not
count the lines of code for reading the instance data and for solution output. The bulk of the
implementation effort is the tuning of some VRPSolver parameters (important but not critical,
the performance using default values is still reasonable). As far as we know, that set of models
provide the most generic existing exact code for bin packing variants. Moreover, the code is
freely available for academic purposes.

The computational experiments on the classic BPP indicate that:

e VRPSolver branch-cut-and-price algorithm seems to be an excellent alternative for in-
stances that are really hard for existing exact methods, either because they are primal-hard
or dual-hard. Primal-hard instances are those where an optimal solution is quite difficult
to find, either by combinatorial heuristics (like [2]), by LP rounding or by diving methods.
However, once an optimal solution is solution found, it is immediately proved to be op-
timal by Gilmore and Gomory bound. Those instances have the so-called Integer Round
Up Property (IRUP). For example, Al instances are primal-hard. Dual-hard instances
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VRPSolver BCPT14
Percentage Opt. Time Nodes | Opt. Time Nodes
0% 6/12 2080 670.7 | 3/12 2820 1291.3
25% | 10/12 1033  412.0 | 4/12 2472 1109.0
50% | 11/12 945 28.7 | 4/12 2526 1058.5
75% 8/12 1803 93.2 | 4/12 2750 1080.2
100% | 10/12 744 11.2 | 4/12 2627 1234.3

Table 7: Comparison of VRPSolver with the approach from [4] on the variable size bin packing
instances in class 3

are those where finding an optimal solution is relatively easy, but Gilmore and Gomory
bound is not enough to prove its optimality, cutting and/or branching is required. For
example, ANI BPP instances are dual-hard. Interestingly, there are no BPP instances in
the literature that are primal-and-dual-hard.

e On the other hand, on instances that are not so difficult, specialized methods may be
faster, sometimes much faster. In fact, Alvim et al. [2] mention that for a significant
number of BPP instances greedy heuristics (like first-fit decreasing or best-fit decreasing)
find solutions that can proven to be optimal using fast lower bounding procedures (like
those in [14])

A similar behaviour can be observed in the experiments with the other bin packing variants: the
VRPSolver branch-cut-and-price algorithms are likely to outperform existing specialized methods
on harder instances. This is explained by the fact that some advanced features in VRPSolver,
like limited-memory rank-1 cuts, enumeration, hierarchical strong branching over accumulated
resource consumption and limited discrepancy search diving heuristics, are more likely to make
a difference on those harder instances.

As a final remark, we believe that the robust results obtained by the VRPSolver models over
all those bin packing variants encourage future attempts of using that tool for solving other
families of problems, not only for vehicle routing.
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