
Drscrete Apphed Mathemattcs 22 (1988/89) 143-148
North-Holland

143

ONLINE VARIABLE-SIZED BIN PACKING *

Nancy G. KINNERSLEY and Michael A. LANGSTON
Department of Computer Scrence, Washmgton State Umversrty, Pullman, WA 99164-1210, USA

Received 25 February 1987
Revised 27 October 1987

The classtcal bm packing problem IS one of the best-known and most widely studied problems
of combmatorral optimtzatton. Efficient offline approxtmatton algorithms have recently been
designed and analyzed for the more general and reahsttc model m which bnns of drffermg
capactttes are allowed (Frtesen and Langston (1986)). In this paper, we constder fast onhne
algortthms for this challenging model. Selecting either the smallest or the largest available bm size
to begin a new bm as pieces arrive turns out to yield a tight worst-case ratio of 2. We devise a
slightly more complicated scheme that uses the largest available bm size for small pieces, and
selects bin stzes for large pieces based on a user-specified fill factor fz l/2, and prove that this
strategy guarantees a worst-case bound not exceeding 1 5 +f/2

1. Introduction

In the classical bin packing problem, the objective is to pack a list of n pieces
P= (PI, P2, ---, p,, j, each with a size in the range (0, 11, into the minimum number
of unit-capacity bins. The general significance of this NP-complete problem is
reflected in the great attention it has received in the literature (see [2] for an updated
survey).

Recently, important generalizations of the bin packing problem have been
investigated [3, 41 in which bin capacities may vary. In particular, the model of [4]
permits a fixed collection of bin sizes, where the objective is to minimize the total
space of the packing. This model is considerably more realistic than that of the
classical problem. (We observe, for example, that the classical problem corresponds
to a lumber yard that sells 2x4s in &foot lengths only!) In [4], some practical,
offline algorithms for variable-sized bin packing were designed and analyzed. The
most complicated of those, termed FFDLS, was proved always to produce a packing
whose total space is asymptotically bounded by $ times the optimum. Also, from
a more purely theoretical standpoint, an offline fully polynomial-time approxi-
mation scheme has very recently been devised in [1 l] using a linear programming
formulation of the problem.

In this paper, we explore the worst-case behavior of fast, online variable-sized bin

*This research IS supported m part by the National Science Foundatton under grants ECS-8403859 and
MIP-8603879, and by the Office of Naval Research under contract N-00014-88-K-0343

0166-218X/89/$3 50 0 1989, Elsevter Science Publishers B.V. (North-Holland)

144 N G Kwmersley, MA Langston

packing schemes. An online algorithm cannot preview and rearrange the elements
of P before it starts to construct a packing, but must instead accept and immediately
pack each piece as it arrives. A number of online strategies have been proposed and
analyzed for the classical problem. See, for example, [9, 10, 12, 131. What makes
our problem even more difficult is that whenever an online algorithm decides to
begin a new bin, it must also select the size of that bin, and cannot go back later
to repack or consolidate bins.

2. Notation

Let k denote the number of distinct bin sizes available, where there is an unlimited
supply of bins of each size. We normalize bin and piece sizes so that the largest
bin is of size 1 (and thus the size of the largest piece cannot exceed 1). Let B=
(B,, B2, . ..I B,) denote the ordered list of I bins containing P as packed by an
online algorithm, ALG. We use B* for the corresponding optimum packing with
m bins. We employ the function s to specify bin and piece sizes, and use the function
c to specify the total contents of a bin. For example, s(p,) denotes the size of the
first piece and c(BI) denotes the cumulative size of all pieces ALG packs in its first
bm. Finally, given an instance I of variable-sized bin packing, we use ALG(1) and
OPT(I) to denote the values Cf=, s(B,) and CL L s(B,*), respectively.

3. Some simple algorithms

One option for an online algorithm is simply to begin a new bin whenever the next
available piece will not fit into the current bin. If bins of size 1 are always used,
thns O(n)-time scheme is called NFL (Next Fit, using Largest possible bins). The
following result 1s from [4] and is reproduced here for the purpose of illustration.

Theorem 3.1. NFL(I) c 2 l OPT(I) + 1 for any instance I.

Proof. For 1 I I c I, c(B,) + c(B, + ,) > 1. Therefore

f: c(B,)>+(Z- 1)
I=1

and

NFL(I)=(I- l)+ 1~2 h c(B,)+ 1
r=l

=2 ; c(B;)+112 f s(B,*)+l=2.OPT(I)+l. Cl
I=1 r=l

Onhne varrable-wed bm packrng 145

Any packing instance consisting of pieces of size + + E and bins of sizes 1 and + + E,
for some arbitrarily small e > 0, demonstrates that the bound of 2 is asymptotically
tight for NFL.

Another alternative is to review all partially packed bins, placing the next
available piece in the first bin with room for it, beginning a new bin only when
necessary. If bins of size 1 are always used, we denote this approach by FFL (First
Fit, using Largest possible bins). By efficiently conducting the review of partially
packed bins [6], FFL can be implemented to run in O(n log n) time.

Theorem 3.2. FFL(1) < 2 - OPT(I) + 1 for any rnsfance I.

Proof. Use the same series of arguments presented in the proof of Theorem 3.1. •!

While the worst-case behavior of First Fit is superror to that of Next Fit for the
classical problem [2, 51, this is not the case for NFL and FFL when applied to
variable-sized bin packing. In fact, any online algorithm that uses the largest
possible bins will produce the same packing when presented with a troublesome
instance such as the one described immediately following the proof of Theorem 3.1.

Given the egregious behavior resulting from the use of large bins, we next
consider FFS (First Fit, using Smallest possible bins), of time complexity
O(n log n + n log k).

Theorem 3.3. FFS(1) c 2 - OPT(I) + 1 for any instance I.

Proof. Since First Fit is used, c(Bt) +c(B,)>s(B,). Also, c(B,) -t-c(B,+,)>s(B,) for
1 I i<J. Thererare,

FFS(I)= i s(B,)cs(B,)+
i=l

:2 f: c(B,)+s(B,)
r=l

52 f: c(B,)+1
r=l

=2 ;_ c(B;)+ 1~2 ;_ @;I + 1
/=I r=l

=2nOPT(I)+ 1. q

Unfortunately, FFS performs no better in the worst case than does NFL or FFL,
since any packing instance consisting of pieces of size + and bins of sizes 1 and 1 - E,
for some arbitrarily small e>O, demonstrates that the bound of 2 is asymptotically
tight for FFS.

146 N G Kmersley, M.A Langston

4. Main result

We observe that FFL errs in its packing of “large” pieces (those with size
exceeding +9, qwhile FFS errs in its packing of “small” pieces (those with size less
than or equal to 39. Therefore, we now focus our attention on a hybrid approach
[7] that we shall denote by FFf. Letfdenote a user-specifiedfiJI factor in the range
[+, 11. Suppose FFf must start a new bin usirg a piece p, . If pI is a small piece, then
FFf starts a new bin of size 1. If p, is a large piece, then FFf selects the smallest bin
size in the range [s(p,9,s(p,)/f] if such a size exists, else it uses bin size 1. For
example, if the fill factor is) and a piece, p,, needs a new bin, then FFf will select
a unit-capacity bin if and only if either s(p,,)s+ or there is no bin with size less
than i &4lable that pl can fill at least 4 full.

Theorem 4.1. FFf(l9 c (1.5 + 4f9 - OPT(I) + 2 for any instance I.

Proof. Gwen an arbitrary instance, I, we classify bins of the FFf packing as follows:
a bm of type X has size 1 and contains a single piece; a bin of type Y has size 1
and contains two or more pieces; a bin of type 2 has size less than 1.

We deviate from this classification for at most two “exceptional” bins. Every bin
of type X, except at most one, must contain a large piece. (To see this, observe that
If a bin of type X contains a small piece, then every subsequent bin of type X must
contam a large piece.9 If there is a bin of type X that contains a small piece, then
we change its classification from type X to exceptional. Similarly, every bin of type
Y, except at most one, must be more than * full. (To see this, observe that if a bin
of type Y is at most 3 full, then every subsequent bin of type Y must contain at least
two pieces, each of size greater than +.9 If there is a bin of type Y that is at most
f full, then we change its classification from type Y to exceptional.

Let x and y denote the number of bins of types X and Y, respectively. Let z denote
the sum of the sizes of all bins of type 2. Thus FFf(l) =x+ y + z + s (any exceptional
bins9 and we have

FFf(l)-2sx+y+z. (19

We now obtain two distinct lower bounds for OPT(I). For the first, we consider
the bin sizes available. Since every bin of type X er Z contains a piece whose size
exceeds +, no two such pieces can share one bin in an optimal packing of I. From
the way FFf selects a new bin for a large piece when one is required, a piece, p,,
from a bin of type X requires a bin of size at least min{ 1, s&)/f } 2: 1/(2fi in an
optimal packing. Also, any large piece used by FFf to begin a bin of type Z is packed
as tightly as possible. Therefore, we have

OPT(I) 1 +x/f + z. (29

For the second lower bound, we consider the total size of all pieces. The contents
of type X bins sum to more than 3x. The contents of type Y bins sum to more than

Onbne varroble-sized bm packrng 147

$y. The contents of type Z bins sum to at least fz. Thus, since x+y >O, we have

OPT(Z) > +X + +y + fz. (3)

Let R denote (FFf(Z) - 2)/OPT(Z). From (1) and (2) we know

Rs(x+y+z)/(+x/f +z)

from which we derive

yZ+Rx/f +Rz-x-z. (4)

From (1) and (3) we know

Rc(x+y+z)/(+x++y+fz)

in which we substitute the lower bound for y from (4), since it is known [l, 81
that, even for unit-capacity bins, any online algorithm’s worst-case ratio exceeds
1.536>5. Thus we derive

Rc(3x+fx+fz(lO-6f))/(2~+4fz)

which is bounded above by +(3x+ fx)/x = 1.5 + f f as long as R is bounded below by
$-. Therefore,

FFf(Z)=R.OPT(Z)+2<(iS++f)~OPT(Z)+2. Cl

5. Discussion

Surprising!y, we conclude from Theorem 4.1 that the simplest variant of FFf may
be the best (in the worst-case sense). By setting f =OS, a small piece needing a new
bin always gets the largest bin available while a large piece needing a new bm always
gets the smallest bin that can contain it. Let FFH denote this limiting-case hybrid.

Corollary 5.1. FFH(Z) c 1.75 - OPT(Z) + 2 for any instance I.

For the classical problem, examples exist [5] to demonstrate that FF(Z) can
approach arbitrarily close to 1.7.OPT(Z) from below. Therefore, of course, the
same holds for FFH under the packing model addressed herein.

The determination of just how tight the bounds given in Theorem 4.1 are is as
yet an open issue. (Slightly more complicated arguments easily reduce the additive
constant from 2 to 1.) However, examples such as the one that follows demonstrate
that Corollary 5.1 does not extend to arbitrary values off, and that the guarantee
of Theorem 4.1 is indeed dependent on f. Let n be evenly divisible by 4. Suppose
that P contains +n pieces of size f + E followed by +n pieces of size 4 + E, and that
bin sizes are f + 2s and 1 for some arbitrarily small E > 0. Thus, for f = 0.6, FFf(Z)
can exceed any value strictly less than 1.8 *OPT(Z).

148 N G Kmnersley, M.A Langston

Fmally, let the parameter q denote an integer greater than 1 and suppose
s@,) 5 1 /q for 1 I I I n. (In this case, FFf reduces to FFL.) As in 15, Theorem 2.31
we note that FFL insures the inequality c(B,)>q/(q+ 1) for all but at most two
values of I in the range [1, /I. Therefore, in this parameterized environment, there
IS no worst-case penalty for variable-sized bin packing. That is, we have

FFL(I) < ((q + 1)/q) - OPT(I) + 2,

the same as for the classical problem. However, the freedom to choose bin (and
ptece) sizes of l/(q+ I) +E, for arbitrarily small E>O, greatly simpliftes the job of
establishing the asymptotic tightness of this parameterized bound.

References

[I] D J Brown, A lower bound for on-hne one-dlmenaonal bin packing algorithms, Tech Rept

R-864, Coordinated Science Laboratory, University of Ilhnols, Urbana, IL (1979)

[2] E G Coffman, Jr , M R Garey and D S Johnson, Approximation algorithms for bm packing An
updated survey, rn G Auslello, M Lucertml and P Serafuu, eds , Algorithm Design for Computer

Systems Design (Springer, New York, 1984). 49-106
[3] D K Friesen and M A Langston, A storage size selection problem, Inform Process Lett 18 (1984)

295-296

[4] D K Friesen and M A Langston, Vanable sized bm packing, SIAM J Comput 15 (1986) 222-230

[5] D S Johnson, A Demers, J D Ullman, M R Garey and R L. Graham, Worst-case performance

bounds for simple one-dlmenslonal packing algorithms, SIAM J Comput 3 (1974) 299-325

[6] D S Johnson, Fast algorithms for bm packing, J Comput Syst. SCI 8 (1974) 272-314.

[7] M A Langston, A study of composite heuristic algorithms, J Oper Res Sot 38 (1987) 539-544.
[8] F M Liang, A lower bound for on-line bm packing. Inform Process Lett 10 (1980) 76-79

[9] C C Lee and D T Lee, A simple on-line bm packing algorithm,, J. ACM 32 (1985) 562-572

[IO] C Martel, A linear on-line bin packing algorithm,, Tech Rept CSRL-83-12, Department of
Electrlcpl and Computer Engmeermg, Umverslty of California, Davis, CA (1983).

[I I] F D Murgolo, An efficient approxlmatlon scheme for variable-sized bm packing, SIAM J
Comput 16 (1987) 149-161

[12] P Ramanan and D J Brown, On-hne bm packmg m linear time, Tech Rept R-1003, Coordinated
Science Laboratory, University of Ilhnois, Urbana, IL (1983)

[13] A C Yao, New algorithms for bm packing, J ACM 27 (1980) 207-227

