408 research outputs found

    Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    Get PDF
    Identification of Endocrine Disrupting Chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause Estrogen Receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERĪ± and/or ERĪ² ligands was assembled (546 for ERĪ± and 137 for ERĪ²). Both single-task learning (STL) and multi-task learning (MTL) continuous Quantitative Structure-Activity Relationships (QSAR) models were developed for predicting ligand binding affinity to ERĪ± or ERĪ². High predictive accuracy was achieved for ERĪ± binding affinity (MTL R2=0.71, STL R2=0.73). For ERĪ² binding affinity, MTL models were significantly more predictive (R2=0.53, p<0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERĪ±, 48 agonists and 32 antagonists for ERĪ², supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERĪ± agonist (PDB ID: 1L2I), ERĪ± antagonist (PDB ID: 3DT3), ERĪ² agonist (PDB ID: 2NV7), ERĪ² antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation

    Review of QSAR Models and Software Tools for Predicting Developmental and Reproductive Toxicity

    Get PDF
    This report provides a state-of-the-art review of available computational models for developmental and reproductive toxicity, including Quantitative Structure-Activity Relationship (QSARs) and related estimation methods such as decision tree approaches and expert systems. At present, there are relatively few models for developmental and reproductive toxicity endpoints, and those available have limited applicability domains. This situation is partly due to the biological complexity of the endpoint, which covers many incompletely understood mechanisms of action, and partly due to the paucity and heterogeneity of high quality data suitable for model development. In contrast, there is an extensive and growing range of software and literature models for predicting endocrine-related activities, in particular models for oestrogen and androgen activity. There is a considerable need to further develop and characterise in silico models for developmental and reproductive toxicity, and to explore their applicability in a regulatory setting.JRC.DG.I.6-Systems toxicolog

    Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    Get PDF
    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure-Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRĪ² was assembled to generate both continuous and classification QSAR models with an external accuracy of R2=0.55 and CCR=0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRĪ² (R2=0.70). Furthermore, molecular docking studies were performed for a set of THRĪ² ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRĪ² structures retrieved from the Protein Data Bank. We found that two agonist-bound THRĪ² conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRĪ²-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRĪ². Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern

    In silico strategies to study polypharmacology of G-protein-coupled receptors

    Get PDF
    The development of drugs that simultaneously target multiple receptors in a rational way (i.e., 'magic shotguns') is regarded as a promising approach for drug discovery to treat complex, multi-factorial and multi-pathogenic diseases. My major goal is to develop and employ different computational approaches towards the rational design of drugs with selective polypharmacology towards guanine nucleotide-binding protein (G-protein)-coupled receptors (GPCRs) to treat central nervous system diseases. Our methodologies rely on the advances in chemocentric informatics and chemogenomics to generate experimentally testable hypotheses that are derived by fusing independent lines of evidence. We posit that such hypothesis fusion approach allows us to improve the overall success rates of in silico lead identification efforts. We have developed an integrated computational approach that combines Quantitative Structure-Activity Relationships (QSAR) modeling, model-based virtual screening (VS), gene expression analysis and mining of the biological literature for drug discovery. The dissertation research described herein is focused on: (1) The development of robust data-driven Quantitative Structure-Activity Relationship (QSAR) models of single target GPCR datasets that will amount to the compendium of GPCR predictors: the GPCR QSARome; (2) The development of robust data-driven QSAR models for families of GPCRs and other trans-membrane molecular targets (i.e., sigma receptors) and the application of models as virtual screening tools for the quick prioritization of compounds for biological testing across receptor families; (3) The development of novel integrative chemocentric informatics approaches to predict receptor-mediated clinical effects of chemicals. Results indicated that our computational efforts to establish a compendium of computational predictors and devise an integrative chemocentric informatics approach to study polypharmacology in silico will eventually lead to useful and reliable tools aimed at identifying and enriching chemical libraries with compounds that have the desired activities for more than one molecular target of interest

    DEVELOPMENT OF AN INTEGRATED IN SILICO STRATEGY FOR THE RISK ASSESSMENT OF CHEMICALS AND THEIR MIXTURES ON DIFFERENT TOXICOLOGICAL OUTCOMES.

    Get PDF
    Daily, we are exposed to a mixture of multiple chemicals via food intake, inhalation and dermal contact. The risk for health that may result from this depends on how the effects of different chemicals in the mixture combine, and whether there is any synergism or antagonism between them. The number of different combinations of chemicals in mixtures is infinite and an efficient test strategy for mixtures is lacking. Furthermore, there is social pressure to reduce animal testing, which is the current practice in safety testing of chemicals. In this context, computational biochemistry and, more in general, bioinformatics meets all the requirements, and provides the foundation for further in vitro or in vivo studies. Aim of this PhD thesis is the development of an in silico workflow able to prioritize and discriminate chemicals that act as endocrine active substances (EAS), interfere with the retinoic acid pathway during embryo development and/or may cause liver toxicity. From the observation of the molecular initiating event to the description of the adverse outcome pathway, both ligand- and structure-based approaches were integrated with systems biology. Within this framework, (Q)SAR and molecular docking results were mixed into a majority consensus score to rank chemicals and low-mode molecular dynamic simulations were used to study their intrinsic activity, with respect to a specific nuclear receptor. Moreover, a computational approach based on both the transition state and the density functional theories was used to try discriminating a subset of chemicals as inhibitors or substrates of particular enzymes involved in the retinoic acid pathway, computing also their binding free energy values. This information was also included both in the pharmaco-dynamics (PD) and in the physiological based pharmaco-kinetics (PBPK) models. This in silico pipeline, besides being faster, has economic and ethical advantages, reducing both the research costs and the number of involved animals, in agreement with the \u201c3R\u201d principles (Reduction, Refinement and Replacement)

    Classifying and scoring of molecules with the NGN: new datasets, significance tests, and generalization

    Get PDF
    <p>Abstract</p> <p/> <p>This paper demonstrates how a Neural Grammar Network learns to classify and score molecules for a variety of tasks in chemistry and toxicology. In addition to a more detailed analysis on datasets previously studied, we introduce three new datasets (BBB, FXa, and toxicology) to show the generality of the approach. A new experimental methodology is developed and applied to both the new datasets as well as previously studied datasets. This methodology is rigorous and statistically grounded, and ultimately culminates in a Wilcoxon significance test that proves the effectiveness of the system. We further include a complete generalization of the specific technique to arbitrary grammars and datasets using a mathematical abstraction that allows researchers in different domains to apply the method to their own work.</p> <p>Background</p> <p>Our work can be viewed as an alternative to existing methods to solve the quantitative structure-activity relationship (QSAR) problem. To this end, we review a number approaches both from a methodological and also a performance perspective. In addition to these approaches, we also examined a number of chemical properties that can be used by generic classifier systems, such as feed-forward artificial neural networks. In studying these approaches, we identified a set of interesting benchmark problem sets to which many of the above approaches had been applied. These included: ACE, AChE, AR, BBB, BZR, Cox2, DHFR, ER, FXa, GPB, Therm, and Thr. Finally, we developed our own benchmark set by collecting data on toxicology.</p> <p>Results</p> <p>Our results show that our system performs better than, or comparatively to, the existing methods over a broad range of problem types. Our method does not require the expert knowledge that is necessary to apply the other methods to novel problems.</p> <p>Conclusions</p> <p>We conclude that our success is due to the ability of our system to: 1) encode molecules losslessly before presentation to the learning system, and 2) leverage the design of molecular description languages to facilitate the identification of relevant structural attributes of the molecules over different problem domains.</p

    Predicting estrogen receptor binding of chemicals using a suite of in silico methods &#8211; Complementary approaches of (Q)SAR, molecular docking and molecular dynamics

    Get PDF
    With the aim of obtaining reliable estimates of Estrogen Receptor (ER) binding for diverse classes of compounds, a weight of evidence approach using estimates from a suite of in silico models was assessed. The predictivity of a simple Majority Consensus of (Q)SAR models was assessed using a test set of compounds with experimental Relative Binding Affinity (RBA) data. Molecular docking was also carried out and the binding energies of these compounds to the ER\u3b1 receptor were determined. For a few selected compounds, including a known full agonist and antagonist, the intrinsic activity was determined using low-mode molecular dynamics methods. Individual (Q)SAR model predictivity varied, as expected, with some models showing high sensitivity, others higher specificity. However, the Majority Consensus (Q)SAR prediction showed a high accuracy and reasonably balanced sensitivity and specificity. Molecular docking provided quantitative information on strength of binding to the ER\u3b1 receptor. For the 50 highest binding affinity compounds with positive RBA experimental values, just 5 of them were predicted to be non-binders by the Majority QSAR Consensus. Furthermore, agonist-specific assay experimental values for these 5 compounds were negative, which indicates that they may be ER antagonists. We also showed different scenarios of combining (Q)SAR results with Molecular docking classification of ER binding based on cut-off values of binding energies, providing a rational combined strategy to maximize terms of toxicological interest

    Bioinformatics and Machine Learning for Cancer Biology

    Get PDF
    Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of ā€œomicsā€ technologies (e.g., genomics, transcriptomics, and epigenomics), computational methods in bioinformatics and machine learning can help scientists and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), machine learning has a uniquely advantageous role in boosting data-driven cancer research and unraveling novel methods for the prognosis, prediction, and treatment of cancer
    • ā€¦
    corecore