4 research outputs found

    Theta-mediated dynamics of spatial information in hippocampus.

    Get PDF
    In rodent hippocampus, neuronal activity is organized by a 6-10 Hz theta oscillation. The spike timing of hippocampal pyramidal cells with respect to the theta rhythm correlates with an animal's position in space. This correlation has been suggested to indicate an explicit temporal code for position. Alternatively, it may be interpreted as a byproduct of theta-dependent dynamics of spatial information flow in hippocampus. Here we show that place cell activity on different phases of theta reflects positions shifted into the future or past along the animal's trajectory in a two-dimensional environment. The phases encoding future and past positions are consistent across recorded CA1 place cells, indicating a coherent representation at the network level. Consistent theta-dependent time offsets are not simply a consequence of phase-position correlation (phase precession), because they are no longer seen after data randomization that preserves the phase-position relationship. The scale of these time offsets, 100-300 ms, is similar to the latencies of hippocampal activity after sensory input and before motor output, suggesting that offset activity may maintain coherent brain activity in the face of information processing delays

    State-Dependent Representation of Amplitude-Modulated Noise Stimuli in Rat Auditory Cortex

    Full text link

    Valuations for Spike Train Prediction

    Get PDF
    The ultimate product of an electrophysiology experiment is often a decision on which biological hypothesis or model best explains the observed data. We outline a paradigm designed for comparison of different models, which we refer to as spike train prediction. A key ingredient of this paradigm is a prediction quality valuation that estimates how close a predicted conditional intensity function is to an actual observed spike train. Although a valuation based on log likelihood (L) is most natural, it has various complications in this context. We propose that a quadratic valuation (Q) can be used as an alternative to L. Q shares some important theoretical properties with L, including consistency, and the two valuations perform similarly on simulated and experimental data. Moreover,Q is more robust than L, and optimization with Q can dramatically improve computational efficiency. We illustrate the utility of Q for comparing models of peer prediction, where it can be computed directly from crosscorrelograms. Although Q does not have a straightforward probabilistic interpretation, Q is essentially given by Euclidean distance

    Valuations for Spike Train Prediction

    No full text
    corecore