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In rodent hippocampus, neuronal activity is organized by a 6 –10 Hz theta oscillation. The spike timing of hippocampal pyramidal cells
with respect to the theta rhythm correlates with an animal’s position in space. This correlation has been suggested to indicate an explicit
temporal code for position. Alternatively, it may be interpreted as a byproduct of theta-dependent dynamics of spatial information flow
in hippocampus. Here we show that place cell activity on different phases of theta reflects positions shifted into the future or past along the
animal’s trajectory in a two-dimensional environment. The phases encoding future and past positions are consistent across recorded CA1
place cells, indicating a coherent representation at the network level. Consistent theta-dependent time offsets are not simply a conse-
quence of phase-position correlation (phase precession), because they are no longer seen after data randomization that preserves the
phase-position relationship. The scale of these time offsets, 100 –300 ms, is similar to the latencies of hippocampal activity after sensory
input and before motor output, suggesting that offset activity may maintain coherent brain activity in the face of information processing
delays.
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Introduction
The “temporal coding” hypothesis proposes that neurons use
precise spike times, in addition to firing rates, to communicate
information. An observation often cited in favor of this possibil-
ity is the hippocampal “phase precession” effect. During spatial
behaviors, the hippocampus exhibits a regular 6 –10 Hz “theta”
oscillation. Both the firing rate of hippocampal place cells and
their spike times with respect to the theta oscillation are corre-
lated with an animal’s location in space (O’Keefe and Dostrovsky,
1971; O’Keefe and Recce, 1993; Harris et al., 2002; Mehta et al.,
2002). When an animal runs on a one-dimensional track, a place
cell fires at a late phase of theta when the animal initially enters
the place field, but firing advances to earlier phases as the animal
traverses the field. In two-dimensional environments, the rela-
tionship of spike timing to the animal’s position and head direc-
tion is less clear, but again an asymmetric precession from late to
early phases is seen as the animal crosses the place field, whichever
the direction of running (Skaggs et al., 1996; Harris et al., 2002).

These observations are typically interpreted within the tem-
poral coding framework, to indicate that spike times of individual
cells explicitly convey information about the animal’s position to
downstream cells (Jensen and Lisman, 2000; Huxter et al., 2003;

Lengyel et al., 2003; O’Keefe and Burgess, 2005). A complemen-
tary viewpoint holds that the organization of spike times is a
signature of ongoing computation taking place through the se-
quential activity of hippocampal cell assemblies within a theta
cycle (Tsodyks et al., 1996; Hasselmo et al., 2002; Harris, 2005;
Dragoi and Buzsaki, 2006). In support of this possibility, hip-
pocampal spike times show greater coordination than expected
from independent temporal coding of spatial location (Harris et
al., 2003).

Here we set out to verify the hypothesis that, across the pop-
ulation of place cells, different phases within the same theta cycle
encode positions offset into either the future or past along the
rat’s trajectory in a two-dimensional environment (see Fig. 1).
Spiking activity of CA1 place cells was recorded in freely moving
rats in an open field environment, and a succession of models
predicting the activity of hippocampal place cells was fit to the
spiking data. We found that spikes on different phases of theta are
best predicted from the immediate future or immediate past lo-
cation of the rat. Moreover, theta phases corresponding to “fu-
ture” and “past” trajectory points are consistent across the pop-
ulation of place cells in CA1, suggesting a coherent representation
of position across this hippocampal population. Although this
phenomenon may be one of the mechanisms contributing to
phase precession, we show that it is not simply a consequence of
phase-position correlation, because randomized data in which
the phase precession of the individual cells was retained did not
show this behavior.

Materials and Methods
Animals and recordings
Male Long–Evans rats (n � 3, five recording sessions) were implanted
with four-shank 32-site silicon probes as described previously (Csicsvari
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et al., 2003). The animals were water restricted and trained to search for
water droplets on a platform (1.8 � 1.8 m or 1 � 1.3 m). Head position
and orientation were determined from two light-emitting diodes fixed
on the head, monitored by an overhead camera with resolution 3.5 pix/
cm. All experimental procedures were in accordance with Rutgers Uni-
versity guidelines. Extracellular spikes and instantaneous theta phase
were extracted from the traces as described by Harris et al. (2002).

Computation of place fields
Place fields were computed as

F� x� � ��
s�1

Ns

�� x̃ts
� x����1/T�

0

T

�� x̃t � x�dt� ,

where x̃t � xt � �(�t)
is the trajectory [possibly altered by a theta-

dependent time offset �(�)], ts are the spike times, �(z)�exp(��z�2/
2�2d2), d is the largest side of the rectangular foraging area, and � is a
smoothing parameter. For each considered cell, the parameter � was
computed to maximize the quality of prediction on the test set (see
cross-validation) for the place field model without time offsets; the aver-
age value of � was 0.038.

Cell selection criteria
Putative pyramidal cells were selected to satisfy the following three crite-
ria: (1) average firing rate �0.6 Hz; (2) separation quality �18
(Schmitzer-Torbert et al., 2005); and (3) optimal smoothing parameter
� � 0.06. A total of 85 recorded cells satisfied the above criteria (19, 17,
23, 12, and 14 in each respective session.)

Analyses
Cross-validation. We compare different models using the following
cross-validation procedure. Each dataset was divided into five equal time
intervals, yielding five different training/test set splits. For each split, four
of the five time intervals were considered to be the “training set” (sup-
plemental Fig. S1 A, available at www.jneurosci.org as supplemental ma-
terial), in which the parameters of each model were fit. The fitted models
provided predictions for the instantaneous firing rate 	(t) on the “test
set,” i.e., the remaining fifth time interval. Fit quality was evaluated based
on log-likelihood

L�	� � �
1

T�
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s�1
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log	�ts�

of observing the spike train on the test set (here ts are the spike times on
the test set) given the firing rate 	(t). The fit quality is defined as L �
L(	) � L(	0), where 	0 is the firing rate prediction from the simplest
model involving only the place field. To avoid bias in the selection of the
test set (see the distributions for position, speed, and head direction in
supplemental Fig. S1, available at www.jneurosci.org as supplemental
material), this procedure was performed for all five combinations of
training/test intervals. The fit quality L was averaged over all five choices
of the test set.

Model fitting. For the “place field model,” the instantaneous firing rate
	(t) was computed as 	(t) � F(x̃t), where x̃t � xt � �(�t)

is the (possibly
time offset) trajectory. For the “global theta tuning model,” 	(t) � A(�t

� �,�)F(x̃t), the parameters of the von Mises distribution A(���,�)�
exp(�cos(���))/2I0(�) were fit as
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where A1 is the ratio of Bessel functions A1( y) � I1( y)/I0( y) (Fisher,
1993), ts are the spike times, and Ns is the total number of spikes in the
spike train. For the “phase field model,” 	(t) � A(�t � �(x̃t),�(x̃t))F(x̃t),
the fields �(x) and �(x) were fit as

�� x� � arg��
s�1

Ns

ei�ts�� x̃ts
� x��,

�� x� � A1
�1���

s�1

Ns

ei�ts�� x̃ts
� x�� /�

s�1

Ns

�� x̃ts
� x�� .

For the “head-direction-dependent phase field model,” 	(t) � A(�t �
�(Yt),�(Yt))F(Yt), where Yt � (xt,HDt) and HDt is the instantaneous
head direction, the fields F( y), �( y), and �( y) were computed as
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where �(x,HD) � �(x)exp(�cosHD)/2I0(�), and the parameter � was
computed to maximize the quality of prediction on the test set; the aver-
age value of � was 1.62.

For each considered cell and each appropriate model, constant time
offsets were computed to maximize the similarity

Q�	� � � �
0

T

	2�t�dt 
 2�
s�1
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	�ts�

of the firing rate 	(t) to the spike train on the training set. The function
Q(	) is similar to log-likelihood but is more robust to noise (Itskov et al.,
2008). The dynamic time offsets were computed by optimizing a three-
parameter family of functions:

��� � � Bsin�sign�� � �0��� � �0��1��� 
 �0,

where the values � of the theta phase are measured in radians and span
the interval (�,). Note that �(�) is a continuous (and periodic) func-
tion of � as well as of all the other parameters. The three parameters B, �0,
and �0 were fit for each individual cell to maximize the Q(	), whereas � �
1.5 was chosen uniformly for all cells to maximize goodness of fit for the
population. This particular parameterization was chosen because it pro-
vided the best prediction quality among a number of alternative param-
eterizations tested. We validated this choice by comparing the fits with
the fits with a parameterization by six-point piecewise linear functions
(supplemental Fig. S2, available at www.jneurosci.org as supplemental
material). The piecewise linear parameterization allows for a significantly
more general shape of �(�); in particular, it does not impose any bimo-
dality. The fits by piecewise linear functions were in very good agreement
with the three-parameter family we used.

Inclusion of spike history dependence. To ensure that our results are not
affected by spike history dependence (Barbieri et al., 2001; Treves, 2004),
we computed the timescales of neural adaptation in the recorded cells
and also fit the model with theta-dependent time offsets and spike history
dependence. For each cell, a place field model 	(t) � g(wt)F(xt) was fit.
Here,

wt � �
ts�t

e
ts�t

�

is a variable reflecting the spiking history at each time t, � is a time scale of
neural adaptation, ts are the spike times, and
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g�w� � �a 
 bw 
 cw2

d 
 w2 	
�

describes the modulation of the instantaneous firing rate by the spiking
history wt ([z]� � z if z � 0, and [z]� � 0 if z � 0). The rational function
form for g(w) was chosen because it provided good cross-validated fits
compared with other considered parametric families (such as a polyno-
mial times an exponential in w). The thresholding ensures that 	(t) is
always non-negative. For each considered �, the coefficients (a, b, c, d)
were fit on the training set, and the quality of fit was evaluated on the
test set. An optimal timescale � was fit for each cell to maximize the
quality of fit on the test set. Most of the considered cells exhibited
timescale � � 11 ms (supplemental Fig. S3C, available at www.
jneurosci.org as supplemental material). Note that the time delay between
theta phases with future and past time offsets is on the order of 50 ms. We
also fit a model that incorporated both spike history dependence and vari-
able time offsets: 	(t) � g(wt)F(xt � �(�)). As is expected from the small
timescale of neural adaptation, the theta-dependent time offsets do not dif-
fer significantly from those computed without neural adaptation (sup-
plemental Fig. S3D, available at www.jneurosci.org as supplemental
material).

Simulation. For each cell that showed preference for dynamic
time offsets in the phase field model type, a head direction-dependent
baseline (no time offsets) phase field model was fit to the data on the
entire recording session. The model parameters were used to generate a
spike train from the rate of an inhomogeneous Poisson process according
to that model using the phase �t and the trajectory and head direction
information Yt of the real data. Time offset curves �(�) were fit for n � 62
real and corresponding simulated cells.

Circular variance of future theta phase. For each set (real and simu-
lated) of fitted curves �j(�), j � 1,. . . ,N, the future phases were computed
as �j � arg max �j(�), and the circular variance was computed as

V � 1 �
1

N
��
j�1

N

cos�j�
2 
 ��

j�1

N

sin�j�
2.

Results
We investigated the relationship between the firing of place cells
and the phase of theta oscillation using a model selection ap-
proach. By a model, we mean a rule that predicts, from the rat’s
trajectory xt and instantaneous theta phase �t, the instantaneous
firing rate 	(t) of a given place cell. In other words, a model is a
prescription F for computing 	(t) � F(xt, �t). The success with
which each model could predict the spike train of a neuron was
evaluated using a cross-validation procedure (see Materials and
Methods). This cross-validation procedure penalizes models
with extraneous parameters; only meaningful additional param-
eters improve the quality of prediction.

As a preliminary step, we fit a simple place field model, in
which the instantaneous firing rate of a place cell is determined
only by the instantaneous position of the rat as 	(t) � F(xt) [we
refer to the function F(x) as the place field]. As expected, for all 85
cells satisfying our criteria for unit isolation quality and firing rate
(see Materials and Methods), this prediction was significantly
better than a prediction of constant firing rate. Next, we exam-
ined position encoding with “constant time offsets.” Although
the usual place field model uses the instantaneous position xt, the
hippocampus may better encode the animal’s position with a
certain time shift into the past or future. The appropriate correc-
tion for the place field model would be 	(t) � F(xt � �), where � is
the constant time offset. For each place cell, the constant time
offset � was chosen automatically to provide the best fit. Similar
to previous work (Muller and Kubie, 1989), this model provided
a better fit than the simple (zero offset) place field model in 50 of

85 considered place cells, with an average measured time offset of
62 ms into the future.

To investigate the dependence of position encoding on theta
phase, we began by considering the theta dependence of time
offsets. This leads us to a place field model 	(t) � F(x̃t) with a
time-deformed trajectory x̃t � xt � �(�t)

(Fig. 1), determined by a
“dynamic time offset” �(�). For every value � of the theta phase,
we associate a time offset �(�); the set of all time offsets for all
values of � forms a curve (Fig. 1, inset). In particular, we allow
that different spikes from the same cell may correspond to either
the future or past position of the rat, depending on the phase of
theta at which the spikes occurred. For each place cell, we tested
for dynamic time offsets by comparing such a model with the
constant time offset model. We found that the dynamic time
offsets model fit better for 84% of cells ( p � 3 � 10�7 on paired
t test) (Fig. 2B).

At this point, one might argue that the reason why the dy-
namic time offset model performs best is because it is the only
model using theta phase in its prediction. Would the dynamic
time offset model still outperform constant time offsets if theta
modulation were explicitly included in the underlying place field
model? To address this question, we considered three additional
sequentially more complex “baseline” (i.e., no time offset) mod-
els that incorporate theta modulation directly. The first baseline
model introduces a (global) “theta tuning curve” A for each cell,

Figure 1. Position encoding with dynamic time offsets. Instantaneous trajectory xt (light
blue) is “deformed” by the evolving theta phase of the local field potential (LFP; dark blue)
according to the time offset curve �(�) (inset). The resulting trajectory xt � �(�) (red) is oscil-
lating between future and past positions. When the rat approaches the place field (time t1 ), the
corresponding place cell can only fire according to a future position that lies inside the place
field; thus, spikes can only occur on a rising theta phase [see �(�) curve; inset]. While the rat
traverses the place field (time t2 ), firing occurs at phases with small time offset, i.e., at values of
theta near the trough. When the rat has left the place field (time t3 ), the cell can only fire
according to a past position (inside the place field), hence on a falling theta phase.
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such that the firing rate is given by 	(t) � A(�t � �,�)F(xt), where
� and � are constants, and A(�t � �,�) is the von Mises proba-
bility density function (Fisher, 1993) of the theta phase for indi-
vidual spikes (here � is the preferred phase of the cell, and �
controls the variance). The second baseline model allows the pre-
ferred phase and variance to depend on position: 	(t) � A(�t �
�(xt),�(xt))F(xt). One can think of �(x) as a “phase field” that
associates a preferred phase to each location in space. The third
model allows the place field and the phase field to also depend on
the head direction.

We compared the performance of each baseline model relative
to the place field model and then compared the improvement of
each baseline model with constant versus dynamic time offsets.
As expected, incorporating theta tuning curves, phase fields, and
head direction directly into the baseline model improved perfor-
mance (Fig. 2A); however, in each case, most cells (84, 85, 72, and
68% in each respective model class) were best described by the
model with dynamic time offsets (Fig. 2B). This suggests that
phase-dependent time offsets improve spike train prediction re-
gardless of how we include theta dependence in the underlying
model. Our conclusions are also not affected by inclusion of spik-
ing history dependence (see Materials and Methods) (supple-
mental Fig. S3, available at www.jneurosci.org as supplemental
material).

Analysis of the shape of the fitted curves
�(�) revealed striking coherence in the tra-
jectory encoding of the recorded cells with
offsets furthest into the past and future oc-
curring at the falling (74 � 45° after the
peak) and rising (68 � 31° before the peak)
phases of the CA1 pyramidal layer theta
rhythm (Fig. 2C,D). This correlation sug-
gests that the CA1 population coherently
represents the rat’s future and past posi-
tions on the same phases of theta.

We therefore observe that the spike
trains of CA1 pyramidal cells are best pre-
dicted with dynamic time offsets. Such a
phenomenon had been hypothesized from
the existence of phase/position correlation
(Skaggs et al., 1996). Are the observed dy-
namic time offsets a simple consequence of
phase/position correlation (phase preces-
sion)? To answer this question, we used our
original data to construct a simulated data-
set that preserves the phase/position corre-
lation for each original cell. If the observed
dynamic time offsets are also present in the
simulated data, it would indicate that they
are a simple consequence of phase preces-
sion; if not, it would suggest that they re-
flect a more elemental principle organizing
hippocampal spike times. To capture the
phase/position correlation in the original
data, we fit a variant of the phase field
model predicting the place field F of each
cell and preferred phase � as a function of
the animal’s position and head direction;
head direction information is necessary be-
cause, in two-dimensional environments,
the theta phase at any location varies with
the angle of approach into the place field
(Skaggs et al., 1996). From this model, a

simulated dataset was generated by sampling from an inhomoge-
neous Poisson process with rate determined by the rat’s instan-
taneous location, head direction, and theta phase (see Materials
and Methods). As expected, the simulated spike trains exhibited
phase precession similar to that in the original observed spike
trains (Fig. 3A,C). However, the consistent dynamic time offsets
seen in the original data were replaced by an incoherent and
small-amplitude pattern in simulated data (Fig. 3E–G) [in the
real data, the circular variance (see Materials and Methods) for
the future phase was V � 0.1, with median amplitude of �(�) 347
ms; in simulated data, V � 0.6, and median amplitude was 37
ms]. We therefore conclude that dynamic time offsets (with dif-
ferent phases of theta corresponding to immediate past/future
position consistently across the population) is a distinct and per-
haps more elementary phenomenon than phase precession.

Discussion
We find that the activity of a CA1 population is best predicted
from the rat’s location at a time offset into the past or future,
depending on the phase of the theta cycle. The dependence of this
offset on theta phase (measured in the CA1 pyramidal layer) was
consistent across the population, with a mean negative offset of
161 ms at 74° after the peak (the falling phase) and a mean posi-
tive offset of 196 ms at 292° (the rising phase). On the falling
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Figure 2. The majority of CA1 place cells exhibit dynamic time offset curves whose dependence on theta is consistent across
the population. A, Improvement in quality of prediction for three baseline models compared with the place field model. The
quality of fit L(	) (see Materials and Methods) was evaluated for each model (place field, global theta tuning, phase field, and
head direction-dependent phase field). The bars represent the average (across the population of cells) difference L � L(	) �
L(	0) in quality of fit between each baseline model and the place field model. Error bars represent SEs. B, For each cell and each
model class (place field, global theta tuning, phase field, and head direction-dependent phase field), the quality of prediction L
was computed for the model fit with no time offsets (blue), constant time offsets (green), and dynamic time offsets (red). The bars
represent the average (across the population of cells) goodness of fit L. For the majority of cells (84, 85, 72, and 68% in each
respective model class), the cell firing was better fit with dynamic time offsets than with constant time offsets. The p values are
for the paired t test, testing the null hypothesis that the quality of fit was not improved for the dynamic time offset model
compared with the next best model in the same model class. C, Dynamic time offset curves �(�) for the phase field model class,
fit from all cells that showed preference for the dynamic time offset model. Curves fit for the other model classes were similar to
shown. Note that positive (future) time offsets occur on rising theta phase, and negative (past) time offsets occur on falling theta
phase. D, Maxima (filled diamonds) and minima (open diamonds) of the curves in C. Remarkably, future/past phases are
consistent across the population of cells [circular variance V � 0.1 for future phases (see Materials and Methods)].

5962 • J. Neurosci., June 4, 2008 • 28(23):5959 –5964 Itskov et al. • Theta-Mediated Dynamics



A                        B 

C                        D

0 180 360
Theta phase (degrees)

τ(θ),original data
τ(θ),simulated data

T
im

e 
of

fs
et

   
 (

se
co

nd
s)

-0.1

-0.2

0

0.1

    original cell 

180

360

Time (seconds)

T
he

ta
 p

ha
se

 (
de

gr
ee

s)

653    654    655     656    657 
0

180

Time (seconds)

T
he

ta
 p

ha
se

 (
de

gr
ee

s)

653    654    655     656    657 

360

0

start

finish

    trajectory
Place field 

F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

Amplitude (sec)

N
u
m

b
e
r 

o
f 
c
e
lls

 

 
Original Data
Simulated Data

p<0.006

0 90 180 270 360
0

5

10

15

20

0 90 180 270 360
0

5

10

15

20

N
um

be
r o

f c
el

ls
N

um
be

r o
f c

el
ls

Original Data
Simulated Data

Theta phase (degrees)

G

E            

Theta phase (degrees)

-0.2

0

0.2

-0.4

0.4

0                                 180                               360 
peak                          trough                            peak

0 180 360

T
im

e 
of

fs
et

T
im

e 
of

fs
et

 (
se

co
nd

s)

       simulated cell

past phases

future phases

Figure 3. Theta phase precession does not explain observed dynamic time offsets. A, Theta phases of spikes versus time for a recorded cell while the rat was traversing a place field along the trajectory shown
in B. B, Trajectory for the time interval in A together with the place field for that cell. C, We fit a head direction-dependent phase field model from the entire recording (	40 min) of the original cell in A. The
resulting model parameters were then used to simulate a spike train from the trajectory, head direction, and theta phase information of the real data. The spike train generated from this model exhibits a similar
pattern of phase precession as the real spike train. Shown are the theta phases of spikes versus time for the same run across the place field as in A. D, Dynamic time offsets for the phase field model were fit for the
original and simulated cells. Graphs of �(�) fit for the original (black) and simulated (gray) cells. Although the simulated cell exhibits a pattern of phase precession similar to that of the original cell, it does not
exhibit similar dynamic time offsets. E, Comparison of dynamic time offsets across the population of real and simulated cells. The scatter plot shows the maxima (filled diamonds) and minima (open diamonds)
of the time offset curves �(�) for each real (red) and simulated (green) cell. For simulated cells, dynamic time offsets are destroyed although phase precession is preserved, indicating that they are not a simple
consequence of phase precession. Note that 19 of 62 simulated cells were best fit with zero �(�) (big green diamond in the middle). All curves �(�) are fit for the phase field model class. F, Distribution of
future/past phases for the recorded (red) and the simulated (green) cells. Future/past phases are consistent across the population of real cells but not for simulated cells. Simulated cells best fit with a
zero-amplitude�(�) were assigned future and past time offset phases at 180° (bars below green diamonds). G, Distribution of the amplitudes of the dynamic time offsets for the recorded (red) and the simulated
(green) cells. Whereas the median amplitude for the real cells was 347 ms, the median amplitude for the simulated cells was 37 ms, i.e., almost 10-fold smaller. The displayed p value is for the paired t test, testing
the null hypothesis that these two distributions have the same mean.
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phase, the population therefore best reflects the animal’s location
at the end of the second-to-last theta cycle; by the time the rising
phase has arrived, population activity reflects a prediction of the
animal’s location approximately two theta cycles into the future.
These observations are compatible with, but not a consequence
of, the dependence of firing phase on location (phase precession);
the observed dynamic time offsets were not seen in simulated
datasets in which the relationship between spiking phase, loca-
tion, and head direction was preserved. Conversely, it is quite
conceivable that the observed dynamic time offsets could con-
tribute to the phenomenon of phase precession.

Environmental signals are conveyed to the hippocampus by
the neocortex, and the majority of hippocampal output returns
to neocortex, suggesting that a function of the hippocampus is to
return information to the neocortex in response to a pattern
received as input. The theta rhythm may serve as a timer of this
process, with the “reset” provided by the relative silence at the
peak of each theta wave allowing a new cycle of encoding and
retrieval to occur (Hasselmo, 2005). Our findings are suggestive
of the following interpretation. Activity at the start of the theta
cycle (the falling phase) reflects cortical input of a primarily sen-
sory nature. This input is dependent on the animal’s location,
but, because of the delays involved in traversing multiple cortical
regions, it is best correlated with the animal’s position as it was
shortly in the past. By the end of the theta cycle (the rising phase),
CA1 activity represents the results of intrahippocampal compu-
tations, which may serve a variety of purposes, perhaps including
providing context for the interpretation of new sensory data, or
the production of motor outputs. Because the return signaling to
sensory and motor areas will again take time, hippocampal out-
put must be relevant to the world as it will be shortly into the
future. The timescales of a few hundred milliseconds that we find
for the past and future predictions are consistent with the timing
of hippocampal activity after sensory stimuli and before move-
ment onsets (Shinba, 1999; Tesche and Karhu, 1999). The highly
structured spike timing patterns seen during the theta cycle may
thus reflect a mechanism of maintaining coherent brain activity
in the face of processing delays.
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