842 research outputs found

    The design, kinematics and torque analysis of the self-bending soft contraction actuator

    Get PDF
    This article presents the development of a self-bending contraction actuator (SBCA) through analysis of its structure, kinematics, and torque formulas, and then explores its applications. The proposed actuator has been fabricated by two methods to prove the efficiency of the human body inspiration, which represents the covering of human bones by soft tissues to protect the bone and give the soft texture. The SBCA provides bending behaviour along with a high force to-weight ratio. As with the simple pneumatic muscle actuator (PMA), the SBCA is soft and easy to implement. Both the kinematics and the torque formula presented for the SBCA are scalable and can be used with different actuator sizes. The bending actuator has been tested under an air pressure up to 500 kPa, and the behaviour of its bending angle, parameters, dimensions, and the bending torques have been illustrated. On the other hand, the experiments showed the efficient performances of the actuator and validate the proposed kinematics. Therefore, the actuator can be used in many different applications, such as soft grippers and continuum arms

    Design, implementation and modelling of the single and multiple extensor pneumatic muscle actuators

    Get PDF
    The soft actuator represents a valuable addition to the robotics research area in last two decades. These actuators provide significant features such as lightweight, softness, high force to weight ratio and the ability to form in different shapes. This article presents a new length model to the single extensor pneumatic muscle actuator (PMA) which is depended on the constructed parameters and the air pressure. On the other hand, the tensile force formula of the contractor actuator has been modified to describe the extension force of the extensor PMA. The parallel structure of four extensor actuators is designed and implemented as continuum arm. The bending behaviour of the proposed arm is illustrated and modelled mathematically. The length model of the single extensor actuator has validated by the comparison between the model and the experiment data and then a neural network (NN) control system is applied to control the elongation of the extensor PMA. The kinematics for the proposed continuum arm are presented to describe the bending of the arm and its direction

    The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons

    Get PDF
    This article presents the development of a power augmentation and rehabilitation exoskeleton based on a novel actuator. The proposed soft actuators are extensor bending pneumatic artificial muscles. This type of soft actuator is derived from extending McKibben artificial muscles by reinforcing one side to prevent extension. This research has experimentally assessed the performance of this new actuator and an output force mathematical model for it has been developed. This new mathematical model based on the geometrical parameters of the extensor bending pneumatic artificial muscle determines the output force as a function of the input pressure. This model is examined experimentally for different actuator sizes. After promising initial experimental results, further model enhancements were made to improve the model of the proposed actuator. To demonstrate the new bending actuators a power augmentation and rehabilitation soft glove has been developed. This soft hand exoskeleton is able to fit any adult hand size without the need for any mechanical system changes or calibration. EMG signals from the human hand have been monitored to prove the performance of this new design of soft exoskeleton. This power augmentation and rehabilitation wearable robot has been shown to reduce the amount of muscles effort needed to perform a number of simple grasps

    Efficient structure-based models for the McKibben contraction pneumatic muscle actuator : the full description of the behaviour of the contraction PMA

    Get PDF
    To clarify the advantages of using soft robots in all aspects of life, the effective behaviour of the pneumatic muscle actuator (PMA) must be known. In this work, the performances of the PMA are explained and modelled with three formulas. The first formula describes the pulling force of the actuator based on the structure parameters; furthermore, the formula presented is the generalised contraction force for wholly-pneumatic muscle actuators. The second important model is the length formula, which is modified to our previous work to fit different actuator structures. Based on these two models, the stiffness of the actuator is formulated to illustrate its variability at different air pressure amounts. In addition, these formulas will make the selection of proper actuators for any robot arm structure easier using the knowledge gained from their performance. On the other hand, the desired behaviour of this type of actuator will be predefined and controlled

    EVA Glove Research Team

    Get PDF
    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area

    Cooperative project by self-bending continuum arms

    Get PDF
    Designing a multi-robot system provides numerous advantages for many applications such as low cost, multi-tasking and more efficient group work. However, the rigidity of the robots used in industrial and medical applications increases the probability of injury. Therefore, lots of research is done to increase the safety factor for robot-human interaction. As a result, either separation between the human and robot is suggested, or the force shutdown to the robot system is applied. These solutions might be useful for industrial applications, but it is not for medical applications as a direct interaction between the human and the machine is required. To overcome the rigidity problem, a soft robot arm is presented in this paper. Studying the structure and performance of a contraction pneumatic muscle actuator (PMA) is illustrated, then useful strategies are used to implement a multi PMA continuum arm to increase the performance options for such types of the actuator. Moreover, twin arms are constructed to organise a collaborative project depending on the performance abilities of the proposed arms and end effectors

    A circular pneumatic muscle actuator (CPMA) inspired by human skeletal muscles

    Get PDF
    This paper illustrates the design, implementation and kinematics of a novel circular pneumatic muscle actuator (CPMA), inspired by the skeletal muscles of a human. The variation of the inner diameter of this actuator is a unique feature. Furthermore, CPMA produces a radial force towards its centre by increasing the diameter of the actuator itself in addition to the reduction in the inner diameter. These performances make the presented actuator suitable to use in numerous applications. The grasping by a soft gripper is chosen as an application to design an efficient soft gripper by using single and multiple CPMAs

    Finite Element Modeling of Pneumatic Bending Actuators for Inflated-Beam Robots

    Full text link
    Inflated-beam soft robots, such as tip-everting vine robots, can control curvature by contracting one beam side via pneumatic actuation. This work develops a general finite element modeling approach to characterize their bending. The model is validated across four pneumatic actuator types (series, compression, embedded, and fabric pneumatic artificial muscles), and can be extended to other designs. These actuators employ two bending mechanisms: geometry-based contraction and material-based contraction. The model accounts for intricate nonlinear effects of buckling and anisotropy. Experimental validation includes three working pressures (10, 20, and 30 kPa) for each actuator type. Geometry-based contraction yields significant deformation (92.1% accuracy) once the buckling pattern forms, reducing slightly to 80.7% accuracy at lower pressures due to stress singularities during buckling. Material-based contraction achieves smaller bending angles but remains at least 96.7% accurate. The open source models available at http://www.vinerobots.org support designing inflated-beam robots like tip-everting vine robots, contributing to waste reduction by optimizing designs based on material properties and stress distribution for effective bending and stress management

    Design, kinematics, and controlling a novel soft robot arm with parallel motion

    Get PDF
    This article presents a novel design for a double bend pneumatic muscle actuator (DB-PMA) inspired by snake lateral undulation. The presented actuator has the ability to bend in opposite directions from its two halves. This behavior results in horizontal and vertical movements of the actuator distal ends. The kinematics for the proposed actuator are illustrated and experiments conducted to validate its unique features. Furthermore, a continuum robot arm with the ability to move in parallel (horizontal displacement) is designed with a single DB-PMA and a two-finger soft gripper. The performance of the soft robot arm presented is explained, then another design of the horizontal motion continuum robot arm is proposed, using two self-bending contraction actuators (SBCA) in series to overcome the payload effects on the upper half of the soft arm

    Novel design and position control strategy of a soft robot arm

    Get PDF
    This article presents a novel design of a continuum arm, which has the ability to extend and bend efficiently. Numerous designs and experiments have been done to different dimensions on both types of McKibben pneumatic muscle actuators (PMA) in order to study their performances. The contraction and extension behaviour have been illustrated with single contractor actuators and single extensor actuators, respectively. The tensile force for the contractor actuator and the compressive force for the extensor PMA are thoroughly explained and compared. Furthermore, the bending behaviour has been explained for a single extensor PMA, multi extensor actuators and multi contractor actuators. A two-section continuum arm has been implemented from both types of actuators to achieve multiple operations. Then, a novel construction is proposed to achieve efficient bending behaviour of a single contraction PMA. This novel design of a bending-actuator has been used to modify the presented continuum arm. Two different position control strategies are presented, arising from the results of the modified soft robot arm experiment. A cascaded position control is applied to control the position of the end effector of the soft arm at no load by efficiently controlling the pressure of all the actuators in the continuum arm. A new algorithm is then proposed by distributing the x, y and z-axis to the actuators and applying an effective closed-loop position control to the proposed arm at different load conditions
    corecore