6,254 research outputs found

    Martin Gardner and His Influence on Recreational Math

    Get PDF
    Recreational mathematics is a relatively new field in the world of mathematics. While sometimes overlooked as frivolous since those who practice it need no advanced knowledge of the subject, recreational mathematics is a perfect transition for people to experience the joy in logically establishing a solution. Martin Gardner recognized that this pattern of proving solutions to questions is how mathematics progresses. From his childhood on, Gardner greatly influenced the mathematical world. Although not a mathematician, he inspired many to pursue careers and make advancements in mathematics during his 25-year career with Scientific American. He encouraged novices to expand their knowledge, enlightened professionals of computer science developments, and established his own proofs

    Constrained Non-Monotone Submodular Maximization: Offline and Secretary Algorithms

    Full text link
    Constrained submodular maximization problems have long been studied, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of non-monotone submodular maximization is less understood: the first approximation algorithms even for the unconstrainted setting were given by Feige et al. (FOCS '07). More recently, Lee et al. (STOC '09, APPROX '09) show how to approximately maximize non-monotone submodular functions when the constraints are given by the intersection of p matroid constraints; their algorithm is based on local-search procedures that consider p-swaps, and hence the running time may be n^Omega(p), implying their algorithm is polynomial-time only for constantly many matroids. In this paper, we give algorithms that work for p-independence systems (which generalize constraints given by the intersection of p matroids), where the running time is poly(n,p). Our algorithm essentially reduces the non-monotone maximization problem to multiple runs of the greedy algorithm previously used in the monotone case. Our idea of using existing algorithms for monotone functions to solve the non-monotone case also works for maximizing a submodular function with respect to a knapsack constraint: we get a simple greedy-based constant-factor approximation for this problem. With these simpler algorithms, we are able to adapt our approach to constrained non-monotone submodular maximization to the (online) secretary setting, where elements arrive one at a time in random order, and the algorithm must make irrevocable decisions about whether or not to select each element as it arrives. We give constant approximations in this secretary setting when the algorithm is constrained subject to a uniform matroid or a partition matroid, and give an O(log k) approximation when it is constrained by a general matroid of rank k.Comment: In the Proceedings of WINE 201

    How to Incentivize Data-Driven Collaboration Among Competing Parties

    Full text link
    The availability of vast amounts of data is changing how we can make medical discoveries, predict global market trends, save energy, and develop educational strategies. In some settings such as Genome Wide Association Studies or deep learning, sheer size of data seems critical. When data is held distributedly by many parties, they must share it to reap its full benefits. One obstacle to this revolution is the lack of willingness of different parties to share data, due to reasons such as loss of privacy or competitive edge. Cryptographic works address privacy aspects, but shed no light on individual parties' losses/gains when access to data carries tangible rewards. Even if it is clear that better overall conclusions can be drawn from collaboration, are individual collaborators better off by collaborating? Addressing this question is the topic of this paper. * We formalize a model of n-party collaboration for computing functions over private inputs in which participants receive their outputs in sequence, and the order depends on their private inputs. Each output "improves" on preceding outputs according to a score function. * We say a mechanism for collaboration achieves collaborative equilibrium if it ensures higher reward for all participants when collaborating (rather than working alone). We show that in general, computing a collaborative equilibrium is NP-complete, yet we design efficient algorithms to compute it in a range of natural model settings. Our collaboration mechanisms are in the standard model, and thus require a central trusted party; however, we show this assumption is unnecessary under standard cryptographic assumptions. We show how to implement the mechanisms in a decentralized way with new extensions of secure multiparty computation that impose order/timing constraints on output delivery to different players, as well as privacy and correctness

    Tool support for reasoning in display calculi

    Get PDF
    We present a tool for reasoning in and about propositional sequent calculi. One aim is to support reasoning in calculi that contain a hundred rules or more, so that even relatively small pen and paper derivations become tedious and error prone. As an example, we implement the display calculus D.EAK of dynamic epistemic logic. Second, we provide embeddings of the calculus in the theorem prover Isabelle for formalising proofs about D.EAK. As a case study we show that the solution of the muddy children puzzle is derivable for any number of muddy children. Third, there is a set of meta-tools, that allows us to adapt the tool for a wide variety of user defined calculi

    Escalating The War On SPAM Through Practical POW Exchange

    Get PDF
    Proof-of-work (POW) schemes have been proposed in the past. One prominent system is HASHCASH (Back, 2002) which uses cryptographic puzzles . However, work by Laurie and Clayton (2004) has shown that for a uniform proof-of-work scheme on email to have an impact on SPAM, it would also be onerous enough to impact on senders of "legitimate" email. I suggest that a non-uniform proof-of-work scheme on email may be a solution to this problem, and describe a framework that has the potential to limit SPAM, without unduly penalising legitimate senders, and is constructed using only current SPAM filter technology, and a small change to the SMTP (Simple Mail Transfer Protocol). Specifically, I argue that it is possible to make sending SPAM 1,000 times more expensive than sending "legitimate" email (so called HAM). Also, unlike the system proposed by Debin Liu and Jean Camp (2006), it does not require the complications of maintaining a reputation system.Comment: To be presented at the IEEE Conference On Networking, Adelaide, Australia, November 19-21, 200

    The System Paradigm

    Full text link
    The introduction explains the sense in which the concept of a paradigm, whose originator, T.S. Kuhn, was inspired by the history of the national sciences, is applied to the context of the social sciences. Here the new paradigm does not necessarily replace the old; several paradigms may function effectively side by side. The milestones in the development of the system paradigm have been the works of Marx, Mises, Hayek, Polányi, Schumpeter and Eucken. Although these make a heterogeneous list in terms of their philosophies and political positions, they share a 'system approach'. They deal not just with individual details of the economy but with the system as a whole, and not just with the economy but with the political, ideological and social dimensions, paying special heed to the interactions between each sphere. The great task for the system paradigm is to study the post-socialist transition. For this, it is indispensable; its explanatory power cannot be replaced by any other paradigm. On the other hand, those applying the system paradigm (like the exponents of other paradigms) are often gravely mistaken. The predictive force of the system paradigm is limited, which urges modesty upon those who employ it.http://deepblue.lib.umich.edu/bitstream/2027.42/39662/3/wp278.pd

    Tiny Groups Tackle Byzantine Adversaries

    Full text link
    A popular technique for tolerating malicious faults in open distributed systems is to establish small groups of participants, each of which has a non-faulty majority. These groups are used as building blocks to design attack-resistant algorithms. Despite over a decade of active research, current constructions require group sizes of O(logn)O(\log n), where nn is the number of participants in the system. This group size is important since communication and state costs scale polynomially with this parameter. Given the stubbornness of this logarithmic barrier, a natural question is whether better bounds are possible. Here, we consider an attacker that controls a constant fraction of the total computational resources in the system. By leveraging proof-of-work (PoW), we demonstrate how to reduce the group size exponentially to O(loglogn)O(\log\log n) while maintaining strong security guarantees. This reduction in group size yields a significant improvement in communication and state costs.Comment: This work is supported by the National Science Foundation grant CCF 1613772 and a C Spire Research Gif
    corecore