39,875 research outputs found

    Timing Analysis using the MARTE Profile in the Design of Rail Automation Systems

    Get PDF
    International audienceFor dependable systems as in the railway domain the timing behaviour is considered part of the functional correctness. Thus timing requirements have to be traced and refined through the system and software development phases and validation and verification efforts have to address the timing as well as the pure input/output behaviour. We show how timing can be handled in a UML or SysML based approach to the development of software-intensive railway systems by using the new MARTE profile. Thereby timing becomes fully integrated in the chain of system and software models and may benefit from tool support. Moreover, automated timing analysis may be employed via model transformations which enables the exploration of timing-related issues in various design phases

    ML-based Fault Injection for Autonomous Vehicles: A Case for Bayesian Fault Injection

    Full text link
    The safety and resilience of fully autonomous vehicles (AVs) are of significant concern, as exemplified by several headline-making accidents. While AV development today involves verification, validation, and testing, end-to-end assessment of AV systems under accidental faults in realistic driving scenarios has been largely unexplored. This paper presents DriveFI, a machine learning-based fault injection engine, which can mine situations and faults that maximally impact AV safety, as demonstrated on two industry-grade AV technology stacks (from NVIDIA and Baidu). For example, DriveFI found 561 safety-critical faults in less than 4 hours. In comparison, random injection experiments executed over several weeks could not find any safety-critical faultsComment: Accepted at 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Network

    Process of designing robust, dependable, safe and secure software for medical devices: Point of care testing device as a case study

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Copyright © 2013 Sivanesan Tulasidas et al. This paper presents a holistic methodology for the design of medical device software, which encompasses of a new way of eliciting requirements, system design process, security design guideline, cloud architecture design, combinatorial testing process and agile project management. The paper uses point of care diagnostics as a case study where the software and hardware must be robust, reliable to provide accurate diagnosis of diseases. As software and software intensive systems are becoming increasingly complex, the impact of failures can lead to significant property damage, or damage to the environment. Within the medical diagnostic device software domain such failures can result in misdiagnosis leading to clinical complications and in some cases death. Software faults can arise due to the interaction among the software, the hardware, third party software and the operating environment. Unanticipated environmental changes and latent coding errors lead to operation faults despite of the fact that usually a significant effort has been expended in the design, verification and validation of the software system. It is becoming increasingly more apparent that one needs to adopt different approaches, which will guarantee that a complex software system meets all safety, security, and reliability requirements, in addition to complying with standards such as IEC 62304. There are many initiatives taken to develop safety and security critical systems, at different development phases and in different contexts, ranging from infrastructure design to device design. Different approaches are implemented to design error free software for safety critical systems. By adopting the strategies and processes presented in this paper one can overcome the challenges in developing error free software for medical devices (or safety critical systems).Brunel Open Access Publishing Fund

    A methodology for the generation of efficient error detection mechanisms

    Get PDF
    A dependable software system must contain error detection mechanisms and error recovery mechanisms. Software components for the detection of errors are typically designed based on a system specification or the experience of software engineers, with their efficiency typically being measured using fault injection and metrics such as coverage and latency. In this paper, we introduce a methodology for the design of highly efficient error detection mechanisms. The proposed methodology combines fault injection analysis and data mining techniques in order to generate predicates for efficient error detection mechanisms. The results presented demonstrate the viability of the methodology as an approach for the development of efficient error detection mechanisms, as the predicates generated yield a true positive rate of almost 100% and a false positive rate very close to 0% for the detection of failure-inducing states. The main advantage of the proposed methodology over current state-of-the-art approaches is that efficient detectors are obtained by design, rather than by using specification-based detector design or the experience of software engineers

    Formalism and judgement in assurance cases

    Get PDF
    This position paper deals with the tension between the desire for sound and auditable assurance cases and the current ubiquitous reliance on expert judgement. I believe that the use of expert judgement, though inevitable, needs to be much more cautious and disciplined than it usually is. The idea of assurance “cases ” owes its appeal to an awareness that all too often critical decisions are made in ways that are difficult to justify or even to explain, leaving the doubt (for the decision makers as well as other interested parties) that the decision may be unsound. By building a well-structured “case ” we would wish to allow proper scrutiny of the evidence and assumptions used, and of the arguments that link them to support a decision. A

    Validation of a software dependability tool via fault injection experiments

    Get PDF
    Presents the validation of the strategies employed in the RECCO tool to analyze a C/C++ software; the RECCO compiler scans C/C++ source code to extract information about the significance of the variables that populate the program and the code structure itself. Experimental results gathered on an Open Source Router are used to compare and correlate two sets of critical variables, one obtained by fault injection experiments, and the other applying the RECCO tool, respectively. Then the two sets are analyzed, compared, and correlated to prove the effectiveness of RECCO's methodology

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling
    corecore