9 research outputs found

    Bridging formal methods and machine learning with model checking and global optimisation

    Get PDF
    Formal methods and machine learning are two research fields with drastically different foundations and philosophies. Formal methods utilise mathematically rigorous techniques for software and hardware systems' specification, development and verification. Machine learning focuses on pragmatic approaches to gradually improve a parameterised model by observing a training data set. While historically, the two fields lack communication, this trend has changed in the past few years with an outburst of research interest in the robustness verification of neural networks. This paper will briefly review these works, and focus on the urgent need for broader and more in-depth communication between the two fields, with the ultimate goal of developing learning-enabled systems with excellent performance and acceptable safety and security. We present a specification language, MLS2, and show that it can express a set of known safety and security properties, including generalisation, uncertainty, robustness, data poisoning, backdoor, model stealing, membership inference, model inversion, interpretability, and fairness. To verify MLS2 properties, we promote the global optimisation-based methods, which have provable guarantees on the convergence to the optimal solution. Many of them have theoretical bounds on the gap between current solutions and the optimal solution

    The computational asymptotics of Gaussian variational inference

    Full text link
    Variational inference is a popular alternative to Markov chain Monte Carlo methods that constructs a Bayesian posterior approximation by minimizing a discrepancy to the true posterior within a pre-specified family. This converts Bayesian inference into an optimization problem, enabling the use of simple and scalable stochastic optimization algorithms. However, a key limitation of variational inference is that the optimal approximation is typically not tractable to compute; even in simple settings the problem is nonconvex. Thus, recently developed statistical guarantees -- which all involve the (data) asymptotic properties of the optimal variational distribution -- are not reliably obtained in practice. In this work, we provide two major contributions: a theoretical analysis of the asymptotic convexity properties of variational inference in the popular setting with a Gaussian family; and consistent stochastic variational inference (CSVI), an algorithm that exploits these properties to find the optimal approximation in the asymptotic regime. CSVI consists of a tractable initialization procedure that finds the local basin of the optimal solution, and a scaled gradient descent algorithm that stays locally confined to that basin. Experiments on nonconvex synthetic and real-data examples show that compared with standard stochastic gradient descent, CSVI improves the likelihood of obtaining the globally optimal posterior approximation
    corecore