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Formal methods and machine learning are two research fields with drastically different 
foundations and philosophies. Formal methods utilise mathematically rigorous techniques for 
software and hardware systems’ specification, development and verification. Machine learning 
focuses on pragmatic approaches to gradually improve a parameterised model by observing a 
training data set. While historically, the two fields lack communication, this trend has changed 
in the past few years with an outburst of research interest in the robustness verification of neural 
networks. This paper will briefly review these works, and focus on the urgent need for broader 
and more in-depth communication between the two fields, with the ultimate goal of developing 
learning-enabled systems with excellent performance and acceptable safety and security. We 
present a specification language, MLS2, and show that it can express a set of known safety and 
security properties, including generalisation, uncertainty, robustness, data poisoning, backdoor, 
model stealing, membership inference, model inversion, interpretability, and fairness. To verify 
MLS2 properties, we promote the global optimisation-based methods, which have provable 
guarantees on the convergence to the optimal solution. Many of them have theoretical bounds on 
the gap between current solutions and the optimal solution.

1. Introduction

Recent advances in machine learning have enabled the development of complex, intelligent software systems with human-level 
performance. Notable examples include image classification and natural language processing, among many others. However, even 
if many machine learning systems (or models) have been successfully applied to industrial applications, they are not rigorously 
engineered. Instead, their design and implementation are based on developers’ experience and have been frequently referred to as 
“dark art”. Compounded with the intensively discussed safety and security issues discovered through various adversarial attacks, 
such as [1–7] and the growing expectation that machine learning models will be applied to safety-critical applications, it is clear that 
rigorous engineering methods are urgently needed [8].

Successful experience from industrial software engineering, which produced software currently applied in, e.g., automotive and 
avionic applications, suggests that, to develop high-quality and low-cost software in a limited production time, a software devel-
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Fig. 1. V-Models for Software [9] (Left) and Machine Learning (Right) Development.

opment life cycle (SDLC) process is required. Considering the V-model of an SDLC, as shown in the left diagram [9] of Fig. 1, the 
development of a software system starts from the understanding and documentation of the operational concepts, the development of 
the requirement and architecture, and the conduction of detailed design before its actual implementation (i.e., coding). Once coded, 
the software must pass unit-level testing and system-level, verification, and validation before deployment. After the deployment, 
maintenance is still required throughout the life of the software. It should be noted that, during the execution of the V-model, feed-

back from a later stage may often trigger the modification to an earlier stage. Therefore, the development is an iterative process rather 
than a sequential process. For machine learning models, the current V-model is no longer suitable, because the machine learning 
models are over-parameterised with complex, fixed structures. Due to the lack of operational semantics, there is no explainable way 
of decomposing the architecture and parameters. A new V-model, as shown in the right diagram of Fig. 1, can still be considered, 
and we will discuss its details in Section 2.

Formal methods are essential tools throughout software development (e.g., by following the V-model) as they provide mathe-

matical rigour (and therefore provable guarantees) to the performance, safety, and security of the final software products. However, 
unlike software systems where formal methods have been developed on the specification, development, and verification of a system, 
formal methods are only developed on the robustness verification of neural networks [10,11,8]. Only local robustness defects of a 
neural network can be dealt with. This paper argues that, to support the new V-model, more formal method-based techniques are 
needed to deal with various safety and security defects of neural networks.

While compelling, the development of formal methods for neural networks is non-trivial because the machine learning community 
currently deals with safety and security defects in an ad-hoc way by, e.g., discovering the weakness with various attacks or improving 
the models with enhanced training methods. That is, dedicated algorithms are developed for specific defects. In this paper, we first 
attempt to describe a dynamic model for learning-enabled systems and then use a common specification language, named MLS2, to 
specify a set of safety and security properties on the dynamic model. Based on the specification language and the dynamic model, the 
verification of MLS2 properties can be reduced to the computation of a few constructs, including the data distribution, the posterior 
distribution, the distance between distributions, and the quantification over a set of inputs.

We consider global optimisation (GO) methods for the verification algorithms to compute the language constructs. GO methods 
can make efficient computations and converge to the optimal results. Many GO methods have a provable bound on the error 
between the obtained optimal solutions. For the computation of the posterior distribution, we may consider Markov Chain Monte 
Carlo (MCMC), which approximates the distribution with a Markov chain, or Variational Inference, which finds the best-known 
distribution that approximates the unknown distribution. For the universal quantification over a set of inputs, we may consider 
Lipschitzian optimisation [12,13] as we did for the robustness verification [14–16].

The organisation of the paper is as follows. In the next section, we will provide notations for the following sections. Then, we 
introduce the new V-model in Section 2, and a new dynamic model for learning-enabled systems in Section 3. These are followed 
by introducing new specification language in Section 4 and how it can be used to express known properties in Section 5. We will 
explain how the language can be verified in Section 6. Finally, we introduce related work in Section 7 and conclude in Section 8.

2. Preliminaries and V-model for machine learning

We use 𝑓w to denote a neural network with weight matrix w. We use x to range over the input domain ℝ𝑛, and 𝑦 to range over 
the labels 𝐶 . Given 𝑓w and x, we write 𝑓w(x) for the probability distribution of classifying x, such that 𝑓w(x)(𝑐) for 𝑐 ∈ 𝐶 is the 
probability of classifying x with label 𝑐. Moreover, we write �̂� = argmax𝑓w(x) for the predictive label. Given a label 𝑦, we write y
for its one-hot encoding. A one-hot encoding can be seen as a probability distribution.

In this section, we explain the phases in the new V-model as shown in the right diagram of Fig. 1.

Operational profile and data collection Different from the “Concept of Operations” phase of the traditional V-model where, the project 
manager communicates with the customers to understand their needs and expectations, the development of an ML model also requires 
the interaction with the customers to retrieve the operational profile and the training data.

A neural network 𝑓w ∶ ℝ𝑛 → [0, 1]|𝐶| is to simulate a target function ℎ ∶ ℝ𝑛 → {1, ..., |𝐶|}. For a real-world function ℎ, the 
2

appearance of an input x in the space ℝ𝑛 is not uniform. We assume that there is a probability density function  ∶ ℝ𝑛 → [0, 1], 
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which returns the probability (x) for each input x. We may also abuse the notation and write ((x, 𝑦)), with the assumption that 
((x, 𝑦)) = (x) because ℎ is a deterministic function. The distribution  is called data distribution. It is usually required that the 
training data includes a set of inputs sampled, i.i.d. from the data distribution.

When designing a neural network for some critical applications, we may need to consider the environment in which it will be 
deployed. In the operational environment, we also have a distribution  ∶ℝ𝑚 → [0, 1], which we call operational profile by inheriting 
the terminology from the reliability engineering area [17]. In [18,19], methods have been proposed to learn an approximate oper-

ational profile ̂ through a set of data collected from the operational environment. The main challenges are to accurately estimate 
the input space of high dimensions and to provide provable guarantees on the gap between ̂ and .

Requirement and specification Unlike the “Requirements and Architecture” phase of the traditional V-model where the project team 
determines the exact requirements and has a high-level design, the project team will not have the exact or complete requirements 
and specifications. Instead, the team must figure out a set of properties the final ML system should satisfy.

Usually, the target function ℎ is unlikely to correctly and precisely specify. The training data can be seen as partial specification, 
with positive and negative examples. Beyond training data, we may need other requirements that cannot be explicitly expressed with 
the training data, such as robustness, privacy, and security properties that we will discuss in Section 5. A common practice in formal 
methods is to design a specification language (as we will do in Section 4), show that it can express desirable properties (Section 5), 
and design verification algorithms that can work with any specification expressible with the language (Section 6).

Architecture and hyperparameter Similar to the “Detailed Design” phase of the traditional V-model where the team will design 
concrete modules and unit tests, machine learning systems require network architecture and hyper-parameters as the detailed design. 
However, such design does not entirely rely on the information from previous stages. Instead, it requires additional domain expertise 
and experience from the designer, frequently refer as the “dark art”.

The detailed design of a neural network is based on its architecture and hyper-parameters. Various criteria have been utilised to 
determine the quality of a trained model, and generalisation is the most popular one. We write 𝐺0−1

𝑓
for the 0-1 generalisation error 

of neural network 𝑓 , and  for the set of neural networks. Then, 𝐺0−1
𝑓

can be decomposed as follows:

𝐺0−1
𝑓

=𝐺0−1
𝑓

− inf
𝑓∈ 𝐺0−1

𝑓

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Estimation error of 𝑓

+ inf
𝑓∈ 𝐺0−1

𝑓
−𝐺0−1,∗

d𝑡𝑟𝑎𝑖𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Approximation error of 

+ 𝐺0−1,∗
d𝑡𝑟𝑎𝑖𝑛

⏟⏟⏟
Bayes error

(1)

where 𝐺0−1,∗
d𝑡𝑟𝑎𝑖𝑛

is the 0-1 generalisation error of the Optimal Bayes classifier over the training dataset d𝑡𝑟𝑎𝑖𝑛. The Bayes error is the 
lowest and irreducible error over all possible classifiers for the given classification problem [20]. It is non-zero if the true labels are 
not deterministic (e.g., an image is labelled as 𝑦1 by one person but as 𝑦2 by others), thus intuitively, it captures the uncertainties in 
the dataset d𝑡𝑟𝑎𝑖𝑛 and the true distribution  when aiming to solve a real-world problem with machine learning. The approximation 
error of  measures how far the best classifier, in  is from the overall optimal classifier, after isolating the Bayes error. The set 
 is determined by the architecture of the machine learning model. Thus the activities at this stage are to minimise this error with 
optimised architecture and hyper-parameters.

Model training Unlike the “implementation” where the programmers write the software code, machine learning systems rely on the 
optimisation algorithm to find the solution automatically. Once the architecture and the hyper-parameters are selected, the training 
is an optimisation process to reduce the estimation error. The estimation error of 𝑓 measures how far the learned classifier 𝑓 is from 
the best classifier in  . Lifecycle activities at the model training stage essentially aim to reduce this error.

Both the approximation and estimation errors are reducible. The ultimate goal of all lifecycle activities is to reduce the two errors 
to 0. This is analogous to the “possible perfection” notion of traditional software as pointed to by Rushby and Littlewood [21,22]. 
That is assurance activities, e.g., performed in support of DO-178C, can be best understood as developing evidence of possible 
perfection. Similarly, for a safety-critical machine learning model, we believe its lifecycle activities should be considered as aiming 
to train a “possibly perfect” model regarding the two reducible errors. Thus, we may have some confidence that the two errors are 
both 0 (equivalently, prior confidence in the irreducible Bayes error since the other two are 0), which indeed is supported by ongoing 
research into finding globally optimised DNNs [23]. When GO is not achievable, heuristic methods to achieve estimation errors as 
minor as possible should also be considered, such as the adversarial training methods such as [24–26].

Testing and empirical evaluation Unlike integration testing in software, which tests the interfacing between modules, machine learn-

ing has less precise semantics and much more complex relations between modules (such as layers, filters, and neurons). A testing 
engineer of machine learning is expected to conduct the following two groups of testing activities.

First, it has been a common practice in machine learning that some empirical evaluation methods, such as test accuracy and 
ROC curve, are taken to understand the performance of a trained model roughly. This step is still required to efficiently rule out 
some poorly performed architecture and hyperparameters. Second, the testing methods, such as [27–30], are also developed to 
utilise automatically generated test cases to estimate the performance of the trained model. When using a testing method, we must 
evaluate test adequacy, i.e., when to terminate the test case generation process. Two main approaches can be utilised, including the 
3

behaviours of a machine learning model in the inference stage and the data instances that might appear in the operational phase. 
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For these approaches, objective metrics are needed to determine the extent to which an analysis technique has been conducted, as 
discussed in the later ALARP principle.

Verification and validation This step is similar to traditional software and machine learning, where the team tests whether the 
obtained system complies to the functional and non-functional requirements. This process can provide a rigorous analysis, and can 
conclude the compliance with probable guarantees.

Neither empirical evaluation nor testing methods can have a provable guarantee of the result. For safety-critical applications, 
formal verification may be needed. Formal verification requires mathematically rigorous proof to argue for or against the satisfiability 
of a property on a given neural network. Existing verification algorithms are mainly focused on point-wise robustness, i.e., the 
robustness of the model over a given input. The algorithms can be roughly categorised into constraint-solving based methods [11], 
abstract interpretation based methods [31–33], GO based methods [10,14,34], and game-based methods [35,36]. The first two 
categories treat deep learning as a white box, with the computation needed on all neurons. This results in the scalability issue due to 
the complexity of the problem and the size of the deep learning. The latter two categories can work with real-world deep learning 
models but are still subject to the curse of dimensionality. Currently, the verification is focused on the robustness problem, and we 
will discuss how to work with other properties in Section 6.

Operational reliability assessment Due to the incomplete requirements, this stage can be more involved than the “Operation and 
Maintenance” phase in the V-model for software. A machine learning model is likely adaptive, and can run in an environment that 
is deviated from its training environment. In these cases, maintenance engineers must closely monitor the system execution, detect 
deviations, and take action when risks occur.

In [18,19], we know that it is possible to compute the reliability in a given operational profile . However, the deployment 
environment may change, rendering the reliability assessment inappropriate. Nevertheless, experience may be learned from reliability 
engineering for conventional software, where techniques have been developed to monitor the changes between different software 
versions to ensure the maintenance and improvement of reliability [37–39]. For the machine learning models, it is suggested that 
we monitor two data distributions (or operational profiles), one for the original environment and the other for the new environment. 
Since the reliability of the result is on the original environment, and we can measure the distance between two data distributions, 
techniques can be developed to predict the reliability in the new environment conservatively.

3. A dynamic model for learning-enabled systems

We assume a learning-enabled autonomous system with a perception component and an attacker. Let 𝐶 be the set of class labels 
for the perception component and 𝑃𝑟𝑜𝑝 a set of atomic propositions. The system is modeled as a labeled probabilistic transition 
system 𝑀 = (𝑆, 𝐴, 𝑃 , 𝜋), where

• 𝑆 is a set of states,

• 𝐴 = {(𝑦1, 𝑦2) | 𝑦1, 𝑦2 ∈ 𝐶} ∪ {𝜒, 𝜏} is a set of actions,

• 𝑃 ∶ 𝑆 ×𝐴 ×𝑆 → [0, 1] is a probabilistic transition relation such that 
∑

𝑎∈𝐴

∑
𝑠′∈𝑆 𝑃 (𝑠, 𝑎, 𝑠′) = 1 for any 𝑠, and

• 𝜋 ∶ 𝑆 → 2𝑃𝑟𝑜𝑝 is a labeling function.

Depending on who leads the behaviour, we categorise system transitions into three classes as follows:

• internal transition, denoted by 𝑃 (𝑠1, 𝜏, 𝑠2), which describes the internal transition behaviour of the system excluding the percep-

tion component, e.g., it can express the update of system objective, the high-level planning, the low-level mechanical movement, 
etc.;

• perception-led transition, denoted by 𝑃 (𝑠1, (𝑦1, 𝑦2), 𝑠2), which is a system transition based on a prediction – with the perception 
component – on state 𝑠1 (or the input to the perception component that is determined by the state 𝑠1), such that the ground 
truth is class 𝑦1 and the predictive label is 𝑦2;

• attacker-led transition, denoted by 𝑃 (𝑠1, 𝜒, 𝑠2), which means a system transition led by an attacker to update a private dataset 
d𝑎𝑑𝑣.

For the security and privacy properties, we assume every state includes several components, i.e., w, d𝑡𝑟𝑎𝑖𝑛, d𝑡𝑒𝑠𝑡, d𝑎𝑑𝑣, where w is 
the current weight of the perception component, d𝑡𝑟𝑎𝑖𝑛 is the training dataset, d𝑡𝑒𝑠𝑡 is the test dataset, and d𝑎𝑑𝑣 is a dataset maintained 
by the attacker. Usually d𝑡𝑟𝑎𝑖𝑛 and d𝑡𝑒𝑠𝑡 do not change. Moreover, the state may include some Boolean variables:

• inference turns True if and only if the perception component is applied the next time. Once inference = True, the state will include 
an instance (x, 𝑦).

• training, which turns True if and only if the last internal transition is for the training of the perception component.

Based on 𝑀 , we can construct a path 𝑠0𝑎1𝑠1𝑎2𝑠2... such that 𝑃 (𝑠𝑖, 𝑎𝑖+1, 𝑠𝑖+1) > 0 for all 𝑖 ≥ 0. Let 𝑃𝑎𝑡ℎ(𝑀) be the set of paths. We 
4

need some notations. For every input instance x, we use
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• 𝑦(x) to denote the ground truth label;

• �̂�(x) to denote the predictive label based on the current perception model;

• 𝑦∗(x) to denote a robust predictive label such that it is the predictive label with the greatest number of corresponding instances 
within a norm ball;

• and 𝑦′(x) to denote a monitor-enforced label.

We may omit the postfix (x) and only write 𝑦, �̂�, 𝑦∗, 𝑦′ if there is no confusion.

3.1. Transition relation

In the following, we provide more details on the transition relation 𝑃 (𝑠1, 𝑎, 𝑠2), according to the actions 𝑎 ∈𝐴.

3.1.1. Transitions for attacker to collect data

The transition 𝑃 (𝑠1, 𝜒, 𝑠2) is a probabilistic transition to update the variable d𝑎𝑑𝑣. The update depends on the need of the attacker 
and can be, e.g., including the past inference result by letting d𝑎𝑑𝑣 = d𝑎𝑑𝑣 ∪ {(x, �̂�)}, where �̂� is the predictive label obtained by the 
attack when inputting instance x on state 𝑠1. By collecting operational data in this way, attackers can reconstruct the distribution of 
the training dataset used by the model to achieve their attack goals, such as performing membership inference.

3.1.2. Transitions for perception component

First, we consider the case where the perception component always makes correct predictions. This assumption was made by 
much existing literature on the specification and evaluation of autonomous systems, such as [40,41]. Technically, let (x, 𝑦) be the 
instance on a state 𝑠1, we let

𝑃 (𝑠1, (𝑦, 𝑦), 𝑠2) ≜ 1 (2)

which suggests that 𝑃 (𝑠1, (𝑦′, 𝑦′), 𝑠2) = 0 for any 𝑦′ ≠ 𝑦.

Now we consider the case where the perception component can be imperfect. Certainly, we may directly use the predictive label, 
and therefore, the transition 𝑃 (𝑠1, (𝑦, �̂�), 𝑠2) is defined as follows:

𝑃 (𝑠1, (𝑦, �̂�), 𝑠2) ≜ 𝑃 (𝑠1, (�̂�, �̂�), 𝑠2) × 𝑃 (�̂�|𝑦, 𝑠1) (3)

where 𝑃 (�̂�|𝑦, 𝑠1) is the predictive probability of the perception component on the instance (x, 𝑦) contained in the state 𝑠1, and 
𝑃 (𝑠1, (�̂�, �̂�), 𝑠2) expresses the probability of transitioning from 𝑠1 to 𝑠2 with a decision �̂� made by the perception component.

3.2. When perception component protected by statistical verification method

For an imperfect perception, the autonomous system may use a robust label, and in this case, the transition is 𝑃 (𝑠1, (𝑦, 𝑦∗), 𝑠2)
such that

𝑃 (𝑠1, (𝑦, 𝑦∗), 𝑠2) ≜ 𝑃 (𝑠1, (𝑦∗, 𝑦∗), 𝑠2) ×
∑
�̂�∈𝐶

𝑃 (�̂�|𝑦, 𝑠1) × 𝑃 (𝑦∗|�̂�, 𝑠1) (4)

where 𝑃 (𝑦∗|�̂�, 𝑠1) can be obtained through statistical verification of neural networks such as [42,43], 𝑃 (�̂�|𝑦, 𝑠1) is the prediction 
probability, and 𝑃 (𝑠1, (𝑦∗, 𝑦∗), 𝑠2) expresses the probability of transitioning from 𝑠1 to 𝑠2 with a decision 𝑦∗ made by the perception 
component.

3.3. When perception component protected by runtime monitor

We may replace the neural network verification with the runtime monitor by using 𝑃 (𝑦′|�̂�, 𝑠1) to approximate the robust labeling 
𝑃 (𝑦∗|�̂�, 𝑠1). Therefore, we assume the autonomous system uses the monitored labeling, i.e.,

𝑃 (𝑠1, (𝑦, 𝑦′), 𝑠2) ≜ 𝑃 (𝑠1, (𝑦′, 𝑦′), 𝑠2) ×
∑
�̂�∈𝐶

𝑃 (�̂�|𝑦, 𝑠1) × 𝑃 (𝑦′|�̂�, 𝑠1) (5)

Remark 1. To avoid the dependencies on the states 𝑠1 that require the computation of probabilistic transitions over all individual 
states, we may use 𝑃 (�̂�|𝑦), 𝑃 (𝑦∗|�̂�), and 𝑃 (𝑦′|�̂�), instead of 𝑃 (�̂�|𝑦, 𝑠1), 𝑃 (𝑦∗|�̂�, 𝑠1), and 𝑃 (𝑦′|�̂�, 𝑠1), in the above expressions. This way, 
we approximate the local conditional probabilities over states with the global conditional probabilities.

3.4. Illustration examples

This section presents several small examples to illustrate the transition systems defined in the previous sections. We consider an 
5

autonomous vehicle and use 𝑠1 = (running, x) and 𝑠2 = (stopped, x) to denote the vehicle’s driving state and the scene captured by 
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Fig. 2. The scheme of pedestrian classifier protected by a statistical verifier and a runtime monitor.

Fig. 3. The probabilistic transitions between 𝑠1 and 𝑠2 are defined in the case of a perfect pedestrian classifier.

Table 1

Confusion matrix for the 
pedestrian classifier.

�̂�=0 �̂�=1

y=0 0.97 0.03

y=1 0.02 0.98

Fig. 4. The probabilistic transitions between 𝑠1 and 𝑠2 are defined in the case of an imperfect pedestrian classifier.

its camera (we assume the camera is perfect here, i.e., without hardware error). The captured scene x is the vehicle’s perception 
components input. Furthermore, we use ground truth 𝑦 = 1 (𝑦 = 0) to indicate a pedestrian is captured (not captured).

Specifically, we consider a pedestrian classifier, one of the perception components, which can produce a predictive label �̂�∈ {0, 1}
for the input x, where 1 and 0 indicate whether or not there exists a pedestrian. In some cases, the prediction may be protected by 
a statistical verifier and a runtime monitor, which can enforce the prediction into robust labels 𝑦∗ and 𝑦′. The diagram of this 
protection scheme is shown in Fig. 2.

For simplicity and without loss of generality, we make the following assumptions: i) the vehicle is running, and a pedestrian is 
captured, i.e., the vehicle is in state 𝑠1 with the ground truth 𝑦 = 1 for the classifier’s input x; ii) the output from the perception 
module (classifier, verifier, or monitor) will be rightly executed by the controller as follows: if a pedestrian is detected, i.e., the 
output is 1; the controller will stop the running vehicle; iii) 𝑃 (𝑠𝑖, (�̂�, �̂�), 𝑠𝑗 ) = 𝑐, 𝑃 (𝑠𝑖, (𝑦∗, 𝑦∗), 𝑠𝑗 ) = 𝑐∗, and 𝑃 (𝑠𝑖, (𝑦′, 𝑦′), 𝑠𝑗 ) = 𝑐′, 
where 𝑐 = 𝑐∗ = 𝑐′ = 1;

Example 1. Consider the pedestrian classifier as perfect. The classifier’s output �̂� is always consistent with the ground truth. Thus, in 
state 𝑠1, there exists only one possibility of state transition, given the existence of pedestrians, that is, a transition from 𝑠1 to 𝑠2 led by 
an action (𝑦 = 1, �̂� = 1) with probability 1. This transition is graphically represented in Fig. 3. In Fig. 3 and the following examples, 
we use the notation 𝑎∕𝑝 on the transition between two states 𝑠1 and 𝑠2 to denote the execution of action 𝑎 with probability 𝑝 to 
transit from 𝑠1 to 𝑠2.

However, in practice, perception components could be imperfect.

Example 2. Let us consider the case where the pedestrian classifier is imperfect and not protected by either a verifier or a monitor. 
The output �̂� can take any value in {0, 1} with a probability defined in the classifier’s predictive confusion matrix shown in Table 1.

Thus, in state 𝑠1, there exist two possibilities of state transition, given the existence of pedestrians. First, if the controller gets 
the output �̂� = 1, the action (𝑦 = 1, �̂� = 1) is taken and leads a transition from 𝑠1 to 𝑠2 with probability 𝑃 (�̂� = 1|𝑦 = 1) = 0.98. We 
note that, the transition probability 𝑃 (𝑠1, (𝑦 = 1, �̂� = 1), 𝑠2) = 𝑃 (�̂� = 1|𝑦 = 1), according to Equation (3) and the assumption that 
𝑃 (𝑠𝑖, (�̂�, �̂�), 𝑠𝑗 ) = 1. Second, if the output is �̂� = 0, the action (𝑦 = 1, ̂𝑦 = 0) makes a self-loop in 𝑠1 with probability 𝑃 (�̂� = 0|𝑦 = 1) =
0.02. These transitions are graphically shown in Fig. 4.
6

Now we consider the cases where a statistical verifier or a runtime monitor protects the imperfect classifier.
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Fig. 5. The probabilistic transitions between 𝑠1 and 𝑠2 are defined in the case of the pedestrian classifier protected by a statistical verifier.

Fig. 6. The probabilistic transitions between 𝑠1 and 𝑠2 are defined in the case of the pedestrian classifier protected by a runtime monitor.

Example 3. Using a protected statistical verifier defines two state transitions for state 𝑠1, similar to the direct use of an imperfect 
classifier, except the calculation of transition probabilities defined by e.g., (4). The graphical transitions defined in this can be 
found in Fig. 5. Similarly, we note that, the transition probability 𝑃 (𝑠1, (𝑦 = 1, 𝑦∗ = 1), 𝑠2) =

∑
�̂�∈{0,1} 𝑃 (�̂�|𝑦 = 1, 𝑠1) × 𝑃 (𝑦∗ = 1|�̂�, 𝑠1), 

according to Equation (4) and the assumption that 𝑃 (𝑠𝑖, (𝑦∗, 𝑦∗), 𝑠𝑗 ) = 1.

As for the monitoring case, for simplicity, we present the graphical illustration by Fig. 6 without a detailed explanation since it 
can be easily understood by replacing the part of the verifier with the monitor.

4. Specification language

We introduce a specification language MLS2, abbreviated for Machine Learning Safety and Security, which will be used in the 
next section to specify a number of known properties.

Definition 1. The syntax of the language MLS2 is

𝜇 ∶= 𝑃 (𝑊 |d) | 𝑃 (𝑌 |x,w) | 𝑃 (𝑌 |d,w) | y

𝑢 ∶= (x, 𝑦) ∼ | w ∼ 𝑃 (𝑊 |d)
𝑣 ∶= 𝑦 ∈ 𝐶 | (x, 𝑦) ∈ d | x ∈𝑀𝑢𝑡(x)
𝛾 ∶= 𝑐 | 𝜇(𝑐) | 𝐷𝐾𝐿(𝜇,𝜇) | ||𝜇 − 𝜇||𝑝 | 𝔼𝑢(𝛾) | 𝕍𝑢(𝛾) | 𝔼𝑣(𝛾) | 𝕍𝑣(𝛾) | 𝛾 + 𝛾 | 𝛾 − 𝛾 | |𝛾|
𝜙 ∶= 𝛾 ≤ 𝑐 | d ⊆ d | ¬𝜙 | 𝜙 ∨ 𝜙 | ∃t ∶ 𝜙

𝜑 ∶= 𝜙 | ¬𝜑 | 𝜑 ∨𝜑 | ○𝜑 | 𝜑U𝜑

(6)

where the bold lower capital letters x, w, d, and y denote an input, a weight matrix, a set of data instances, and a probability 
distribution, respectively. We use t to range over {x, d, y}. Capital letters 𝑊 and 𝑌 denote random variables for the weight matrix 
and the label, respectively. Moreover, we use 𝑐 to express either a constant value or some concrete value of a random variable. 
We use variable 𝑢 to range over the support of distribution (i.e., (x, 𝑦) ∼ or w ∼ 𝑃 (𝑊 |d)), and use variable 𝑣 to range over the 
instances in a known set (i.e., (x, 𝑦) ∈ d or 𝑦 ∈ 𝐶 or x ∈𝑀𝑢𝑡(x)), where 𝑀𝑢𝑡 is a set of mutations that maps an input instance x into 
a set of new input instances.

Intuitively, 𝑃 (𝑊 |d) expresses the posterior distribution of the models parameterised with 𝑊 , when they are trained on a dataset 
d. The expression 𝑃 (𝑌 |x, w) is the predictive distribution when the model is parameterised with known w. The input instance is x, 
and 𝑃 (𝑌 |d, w) denotes the probability distribution of predictive labels 𝑌 over a set of data d. These three distributions serve as the 
most fundamental elements of the properties. We can also have the distributions from the labels’ one-hot encoding y.

The formulas 𝛾 return real values. Specifically, 𝜇(𝑐) is the probability density of the distribution 𝜇 on 𝑐. For example, we can 
write 𝑃 (𝑌 |x, w)(𝑦) for some 𝑦 ∈ 𝐶 to denote the probability of predicting x as label 𝑦 when the model is parameterised with w. The 
formulas 𝐷𝐾𝐿(𝜇, 𝜇) and ||𝜇 − 𝜇||𝑝, for 𝑝 ≥ 0, express the distance between two distributions with the KL divergence and the norm 
distance, respectively. There are different measurements to measure the distance between two distributions. In this paper, we take 
KL divergence as an example and believe the formalism is generic and can be extended to other measurements. The formulas 𝔼𝑢(𝛾)
and 𝕍𝑢(𝛾) return the mean and the variance, respectively, of 𝛾 . We will use the same notations, 𝔼(x,𝑦)∈d(𝛾) and 𝕍(x,𝑦)∈d(𝛾), when 
considering a dataset d. Moreover, we may use the linear combination of 𝛾 , i.e., 𝛾 + 𝛾 and 𝛾 − 𝛾 , and the absolute value |𝛾|.

Once having 𝛾 , the formula 𝜙 can be formed by asserting relational relations between 𝛾 and a constant 𝑐, then composing a 
Boolean formula with Boolean operators. In the definition, we only write the relational operation ≤ and a minimum set of Boolean 
operators, i.e., {¬, ∨} and it is straightforward to extend them to other relational operators {<, ≥, >} and other Boolean operators 
7

{∧, ⇒, ⟺ }. Similarly, we only write the existence quantifier ∃ in the definition but will use ∀ in the following.
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Moreover, we use the usual linear temporal logic (LTL) operators U and ○ to consider the dynamic evolution of the system. We 
will also freely use other LTL operators, such as □ and ◊, which can be expressed with U and Boolean operators.

The semantics of the language can be obtained by first having the standard semantics for the language constructs and then 
following the syntax.

• 𝑠 ⊧ 𝑃 (𝑊 |d)(w) ≤ 𝑐 iff the probability of a given weight w on the posterior distribution 𝑃 (𝑊 |d) is no greater than a constant 𝑐.

• 𝑠 ⊧ 𝑃 (𝑌 |x, w)(𝑦) ≤ 𝑐 iff, given a neural network with weight w, the probability of predicting the input x as 𝑦 is no greater than 
a constant 𝑐.

• 𝑠 ⊧ 𝑃 (𝑌 |d, w)(𝑐) iff, given a neural network with weight w, the probability of a label 𝑦 over a set of data d is no greater than a 
constant 𝑐.

• 𝑠 ⊧ y(𝑦) ≤ 𝑐 iff the probability of a label 𝑦 in a distribution (i.e., one-hot encoding) y is no greater than a constant 𝑐.

• 𝑠 ⊧ 𝐷𝐾𝐿(𝜇1, 𝜇2) ≤ 𝑐 iff the KL divergence between two distributions 𝜇1 and 𝜇2 is no greater than a constant 𝑐.

• 𝑠 ⊧ ||𝜇1 − 𝜇2||𝑝 ≤ 𝑐 iff the 𝑝-norm distance between two distributions 𝜇1 and 𝜇2 is no greater than a constant 𝑐.

• 𝑠 ⊧ 𝔼(x,𝑦)∼𝑃 (𝑌 |x, w)(𝑦) ≤ 𝑐 iff, when given a neural network with weight w, the mean of predictive probability on a given label 
𝑦, over a data distribution , is no greater than a constant 𝑐.

• 𝑠 ⊧ 𝔼w∼𝑃 (𝑊 |d)𝑃 (𝑌 |x, w)(𝑦) ≤ 𝑐 iff, on a given input x, the mean of predictive probability on a given label 𝑦, over a posterior 
distribution 𝑃 (𝑊 |d) of weight w on a given dataset d, is no greater than a constant 𝑐.

• 𝑠 ⊧ 𝔼(x,𝑦)∈d𝑃 (𝑌 |x, w)(𝑦) ≤ 𝑐 iff, when given a neural network with weight w, the mean of predictive probability on a given label 
𝑦, over a known dataset d, is no greater than a constant 𝑐.

• 𝑠 ⊧ 𝔼x∈𝑀𝑢𝑡(x))𝑃 (𝑌 |x, w)(𝑦)) ≤ 𝑐 iff, when given a neural network with weight w, the mean of predictive probability on a given 
label 𝑦, over a known set of mutations 𝑀𝑢𝑡 on an input x, is no greater than a constant 𝑐.

• We omit other operators for their standard semantics, including the mathematical operator + and −, the absolute value operator ||, the relational operators ⊆, and logic operators such as ¬, ∨, ∃, ¬, ○, U.

Note that, the computation of 𝑃 (𝑊 |d) will be explained in Section 6.1 and 6.2, and the computation of 𝑃 (𝑌 |d, w) will be explained 
in Section 6.3. 𝑃 (𝑌 |x, w)(𝑦) is the prediction probability that can be obtained directly by reading the output of the classifier, and y is 
a known distribution. The KL divergence and norm distance computation are discussed in Section 6.5. The computation of mean and 
variance is discussed in Section 6.4. The semantics above can be easily extended to deal with formulas such as 𝔼(x,𝑦)∼(||𝑃 (𝑌 |x, w) −
y||2) and 𝔼(x,𝑦)∈d(1 −𝑃 (𝑌 |x, w)(𝑦)). The computation of ∃ and ∀ is explained in Section 6.6. Finally, the diffusion model in Section 6.7

can be utilised to resolve the quantifiers ∃ and ∀ and the posterior distribution 𝑃 (𝑊 |d).
5. Safety, security, and privacy properties

This section formalises several safety, security, and privacy properties with the specification language described in the previous 
section.

5.1. Generalisation

Generalisation concerns the performance of the machine learning model on unseen data (or on the underlying data distribution). 
The following formula 𝜙1

𝑔𝑒𝑛 expresses that the expected loss, measured over the difference between the prediction 𝑃 (𝑌 |x, w) and the 
ground truth 𝑦 on the data distribution , is lower than a pre-specified threshold. Formally,

𝜙1
𝑔𝑒𝑛(w) ≜ 𝔼(x,𝑦)∼(||𝑃 (𝑌 |x,w) − y||2) < 𝜖1𝑔𝑒𝑛 (7)

where y is the one-hot encoding of the label 𝑦 and 𝜖1𝑔𝑒𝑛 > 0 is a small constant. Note that w is the only free variable of the above 
expression, i.e., the evaluation of ||𝑃 (𝑌 |x, w) − y||2 can be done over a state where there is an instance (x, 𝑦). Beyond that, for the 
entire formula 𝜙1

𝑔𝑒𝑛, Section 6.4 explains how it can be evaluated after estimating the data distribution  (as in Section 6.3).

Moreover, generalisation is a concept close to overfitting, which suggests that a model may perform (much) better on the training 
data than on the test data (i.e., the data distribution). We can specify this view – generalisation gap – with the following formula

𝜙2
𝑔𝑒𝑛(w) ≜ |𝔼(x,𝑦)∼(||𝑃 (𝑌 |x,w) − y||2) − 𝔼(x,𝑦)∈d𝑡𝑟𝑎𝑖𝑛

(||𝑃 (𝑌 |x,w) − y||2)| < 𝜖2𝑔𝑒𝑛 (8)

where d𝑡𝑟𝑎𝑖𝑛 is the set of training data and 𝜖2𝑔𝑒𝑛 > 0 is a pre-specified small constant. Intuitively, 𝜙2
𝑔𝑒𝑛 requires that the gap be-

tween the performance on the data distribution, i.e., 𝔼(x,𝑦)∼(||𝑃 (𝑌 |x, w) − y||2), and the performance on the training dataset, i.e., 
𝔼(x,𝑦)∈d𝑡𝑟𝑎𝑖𝑛

(||𝑃 (𝑌 |x, w) − y||2), is bounded and insignificant. Similarly, w is the only free variable of the above expression, and the 
formula 𝜙2

𝑔𝑒𝑛 can be evaluated over a state.

Finally, since a model with good generalisation ability may refer to either of the above cases, we use the following formula

𝜙𝑔𝑒𝑛(w) ≜□(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ⇒ 𝜙1
𝑔𝑒𝑛(w) ∨ 𝜙2

𝑔𝑒𝑛(w)) (9)
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to ensure that the perception component has a good generalisation ability whenever it is trained.



Journal of Logical and Algebraic Methods in Programming 137 (2024) 100941S. Bensalem, X. Huang, W. Ruan et al.

5.2. Uncertainty

The ability to output a prediction and confidence is critical to downstream tasks. While a neural network may output a prediction, 
it is desirable to understand its confidence in making such a prediction. For example, when the neural network is for a perception task, 
a planning module may consider confidence (to understand if the result from the perception module is trustable) when determining 
the actions to be taken in the following steps.

Assume we have a model with weight matrix w and an input x. First of all, we may ascertain the data uncertainty through the 
predictive probability, i.e.,

𝜙1
𝑢𝑛𝑐(w,x) ≜ 𝕍𝑦∈𝐶 (𝑃 (𝑌 |x,w)(𝑦)) > 𝜖1𝑢𝑛𝑐 (10)

which requires the variance of the output probability to be greater than a positive constant 𝜖1𝑢𝑛𝑐 . We note that, a small variance may 
suggest that the predictive probability values of different classes are close to each other [44,45]. Therefore, a greater variance can 
represent a lower uncertainty in this case. Note that the formula 𝜙1

𝑢𝑛𝑐 includes two free variables w and x, which suggests that it can 
be evaluated on a state by providing an input x.

Moreover, we may work with the total uncertainty, i.e., the data and the model uncertainties. In this case, the following formula 
may be considered:

𝜙2
𝑢𝑛𝑐(x) ≜ 𝕍w∼𝑃 (𝑊 |d)(𝑃 (𝑌 |x,w)(�̂�)) < 𝜖2𝑢𝑛𝑐 (11)

where �̂� is the predicted label of x with the model parameterised with w. Intuitively, it is to determine if the variance of the prediction 
on �̂� over the posterior distribution is smaller than a positive constant 𝜖2𝑢𝑛𝑐 . Note that, after the estimation of posterior distribution 
𝑃 (𝑊 |d) (details in Section 6.1 and Section 6.2), the formula can be evaluated on a state.

Finally, we may use the following formula:

𝜙𝑢𝑛𝑐(w,x) ≜□(inference ⇒ 𝜙1
𝑢𝑛𝑐(w,x) ∧ 𝜙2

𝑢𝑛𝑐(x)) (12)

to ensure that, whenever an inference occurs on instance x, the uncertainty over the prediction of x on the model w is low.

5.3. Robustness

Robustness concerns whether or not a perturbation may lead to a drastic change in the output. Simply speaking, a model with 
weight matrix w is robust over an input x can be expressed as

𝜙1
𝑟𝑜𝑏

(w,x) ≜ ∀r ∶ ||r||2 ≤ 𝑐 ⇒ |𝑃 (𝑌 |x + r,w)(�̂�) − 𝑃 (𝑌 |x,w)(�̂�)| ≤ 𝜖𝑟𝑜𝑏 (13)

where r ∈ℝ𝑛 denotes the perturbation. Intuitively, it says that as long as the perturbation is within a range, the predictive probability 
on �̂� is bounded by 𝜖𝑟𝑜𝑏. Note that ||r||2 is not in the syntax but is a syntax sugar for ||r − 0||2, where 0 is an all-zero vector of the 
same shape with r. Similar to the formulas for uncertainty, robustness concerns a certain prediction, and therefore there are two free 
variables, w and x, in the formula 𝜙1

𝑟𝑜𝑏
.

Finally, we may use the following formula:

𝜙𝑟𝑜𝑏(w,x) ≜□(inference ⇒ 𝜙1
𝑟𝑜𝑏

(w,x)) (14)

to ensure that, whenever an inference occurs, the robustness over the prediction of x on the model w is satisfied.

5.4. Data poisoning

Data poisoning suggests that by adding a set d′ of poisoning data to the training dataset d, it can make the model predict a 
specific input x𝑎𝑑𝑣 as a target label 𝑦𝑎𝑑𝑣. Formally, we can write the following formula

𝜙1
𝑝𝑜𝑖

(d,d′) ≜ ∀𝑦 ∶ 𝔼w∼𝑃 (𝑊 |d∪d′)(𝑃 (𝑌 |x𝑎𝑑𝑣,w)(𝑦𝑎𝑑𝑣)) ≥ 𝔼w∼𝑃 (𝑊 |d∪d′)(𝑃 (𝑌 |x𝑎𝑑𝑣,w)(𝑦)) (15)

where 𝔼w∼𝑃 (𝑊 |d∪d′)𝑃 (𝑌 |x𝑎𝑑𝑣, w)(𝑦𝑎𝑑𝑣) returns the probability of labelling x𝑎𝑑𝑣 with 𝑦𝑎𝑑𝑣 after poisoning. Intuitively, 𝜙1
𝑝𝑜𝑖
(d, d′)

suggests that 𝑦𝑎𝑑𝑣 is the predictive label. This expression is stronger than the usual definition of data poisoning as we utilise the 
Bayesian view and obtain the prediction for x𝑎𝑑𝑣 after considering the posterior distribution.

While the targeted classification is required, we may also need to ensure that the poisoning does not affect the performance of 
the training data, i.e.,

𝜙2
𝑝𝑜𝑖(d,d′) ≜ (𝔼w∼𝑃 (𝑊 |d∪d′)(𝔼(x,𝑦)∈d(||𝑃 (𝑌 |x,w) − y||2))) ≤ 𝜖2𝑝𝑜𝑖 (16)

Intuitively, when weighted over the posterior distribution, the average loss on the training data is no greater than a positive constant 
𝜖2
𝑝𝑜𝑖

.

Now, to ensure resistance to the data poisoning attacks, we require the dataset maintained by the attacker, i.e., d𝑎𝑑𝑣, cannot 
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successfully poison the usual training on the training dataset d𝑡𝑟𝑎𝑖𝑛. Then, by defining the formula
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𝜙𝑝𝑜𝑖(d,d′) ≜□(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ⇒ ¬𝜙1
𝑝𝑜𝑖(d,d′) ∨ ¬𝜙2

𝑝𝑜𝑖(d,d′)) (17)

we concretise d and d′ into d𝑡𝑟𝑎𝑖𝑛 and d𝑎𝑑𝑣, respectively, and expect 𝜙𝑝𝑜𝑖(d𝑡𝑟𝑎𝑖𝑛, d𝑎𝑑𝑣) to be satisfiable on the system 𝑀 , which 
expresses that, whenever training is executed, either of the above formulas fails.

5.5. Backdoor

A Backdoor attack is to determine the existence of a trigger r, by which all inputs x will be classified as a specific label 𝑦𝑎𝑑𝑣. 
Formally, we have the following formula

𝜙1
𝑏𝑎𝑐

(w) ≜ ¬∃r∀x∀𝑦 ∶ 𝑃 (𝑌 |x+ r,w)(𝑦𝑎𝑑𝑣) ≥ 𝑃 (𝑌 |x + r,w)(𝑦) (18)

to express the resistance to the backdoor attack. We can also take the Bayesian view, and write

𝜙2
𝑏𝑎𝑐

(d) ≜ ¬∃r∀x∀𝑦 ∶ 𝔼w∼𝑃 (𝑊 |d)(𝑃 (𝑌 |x + r,w)(𝑦𝑎𝑑𝑣)) ≥ 𝔼w∼𝑃 (𝑊 |d)(𝑃 (𝑌 |x + r,w)(𝑦)) (19)

Then, we may have the formula

𝜙𝑏𝑎𝑐(w,d𝑡𝑟𝑎𝑖𝑛) ≜□(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ⇒ 𝜙1
𝑏𝑎𝑐

(w) ∧ 𝜙2
𝑏𝑎𝑐

(d𝑡𝑟𝑎𝑖𝑛)) (20)

which expresses that both of the above backdoor definitions are satisfied when training a new learning component. It is also possible 
that the backdoor might be achieved through data poisoning, and we may write

𝜙𝑏𝑎𝑐(w,d𝑡𝑟𝑎𝑖𝑛,d𝑎𝑑𝑣) ≜ ¬◊(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ∧ 𝜙2
𝑏𝑎𝑐

(d𝑡𝑟𝑎𝑖𝑛) ∧ ¬𝜙2
𝑏𝑎𝑐

(d𝑡𝑟𝑎𝑖𝑛 ∪ d𝑎𝑑𝑣)) (21)

which expresses that, there does not exist any time in the future that the model is resistant to the backdoor trigger if trained on the 
usual training dataset but is not resistant if trained on the poisoned dataset.

5.6. Model stealing

Model stealing is to reconstruct a model that is functionally equivalent to the original model. The reconstruction can be conducted 
by first querying a set of data instances and then training a surrogate model with the data instances. First of all, we define the 
following formula

𝜙1
𝑠𝑡𝑒(d1,d2) ≜𝐷𝐾𝐿(𝑃 (𝑊 |d1), 𝑃 (𝑊 |d2)) < 𝜖1𝑠𝑡𝑒 (22)

to express that the two posterior distributions trained on two different datasets d1 and d2, i.e., 𝑃 (𝑊 |d1) and 𝑃 (𝑊 |d2), are similar. 
Second, the following formula expresses that the dataset d is classified well by the original model whose weight matrix is w, i.e.,

𝜙2
𝑠𝑡𝑒(d,w) ≜ 𝔼(x,𝑦)∈d(1 − 𝑃 (𝑌 |x,w)(𝑦)) < 𝜖2𝑠𝑡𝑒 (23)

where 𝜖2𝑠𝑡𝑒 is a small positive constant. We can use 𝜙2
𝑠𝑡𝑒(d, w) to express that d is from the same distribution as the underlying data 

distribution.

Finally, the resistance to the model stealing is to make the following formula hold:

𝜙𝑠𝑡𝑒(d𝑡𝑟𝑎𝑖𝑛,d𝑎𝑑𝑣,w) =□(¬𝜙2
𝑠𝑡𝑒(d𝑎𝑑𝑣,w) ∨ ¬𝜙1

𝑠𝑡𝑒(d𝑡𝑟𝑎𝑖𝑛,d𝑎𝑑𝑣)) (24)

which expresses that either the adversarial dataset is not on the distribution or the reconstruction fails with high probability. That 
is, at any time when the attacker collects a set of adversarial data d𝑎𝑑𝑣 that are on the data distribution, training on d𝑎𝑑𝑣 has a 
significant difference from training on d𝑡𝑟𝑎𝑖𝑛.

5.7. Membership inference

Membership inference is to determine if an instance (x𝑎𝑑𝑣, 𝑦𝑎𝑑𝑣) is in the training dataset or not. Formally, we use

𝜙1
𝑚𝑒𝑚(x, 𝑦,d) ≜ 𝔼w∼𝑃 (𝑊 |d)(𝑃 (𝑌 |x,w)(𝑦)) > 𝜖1,𝑒𝑚𝑒𝑚 ∧ 𝕍w∼𝑃 (𝑊 |d)(𝑃 (𝑌 |x,w)(𝑦)) < 𝜖1,𝑣𝑚𝑒𝑚 (25)

to express that the data instance (x, 𝑦) is on the same distribution as d. Intuitively, the formula 𝔼w∼𝑃 (𝑊 |d)(𝑃 (𝑌 |x, w)(𝑦)) > 𝜖1,𝑒𝑚𝑒𝑚 says 
that, once a model is trained with dataset d, the expected predictive probability of labelling x with 𝑦 is higher than 𝜖1,𝑒𝑚𝑒𝑚. If the 
constant 𝜖1,𝑒𝑚𝑒𝑚 is close to 1, the satisfiability of formula 𝜙1

𝑚𝑒𝑚(x, 𝑦, d) suggests that the instance (x, 𝑦) is on the same distribution with 
d. The other expression 𝕍w∼𝑃 (𝑊 |d)(𝑃 (𝑌 |x, w)(𝑦)) < 𝜖1,𝑣𝑚𝑒𝑚 imposes a stronger condition that the variance needs to be small when the 
positive constant 𝜖1,𝑣𝑚𝑒𝑚 is close to 0.

Based on the above, we have the following formula

𝜙2 (d𝑎𝑑𝑣) ≜ ∀d1∀d2 ∶ (d1 ⊆ d𝑎𝑑𝑣 ∧ d2 ⊆ d𝑎𝑑𝑣 ∧ 𝜙2 (d1) ∧ 𝜙2 (d2))⇒
10

𝑚𝑒𝑚 𝑠𝑡𝑒 𝑠𝑡𝑒

(𝜙1
𝑚𝑒𝑚(x𝑎𝑑𝑣, 𝑦𝑎𝑑𝑣,d1) ⟺ 𝜙1

𝑚𝑒𝑚(x𝑎𝑑𝑣, 𝑦𝑎𝑑𝑣,d2))
(26)
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which expresses that for any two datasets d1 and d2 that are both subsets of d𝑎𝑑𝑣, if they are both on the underlying data distribution, 
the decision on whether the sample (x𝑎𝑑𝑣, 𝑦𝑎𝑑𝑣) is in the training data is unambiguous.

Finally, the resistance to the membership inference is expressed with the following formula:

𝜙𝑚𝑒𝑚(d𝑎𝑑𝑣) ≜□𝜙2
𝑚𝑒𝑚(d𝑎𝑑𝑣) (27)

which suggests that the attacker can never utilise the collected data d𝑎𝑑𝑣 to achieve the membership inference successfully.

5.8. Model inversion

During inference, a model inversion attack infers sensitive information about an instance. Without loss of generality, we assume 
that each data instance includes 𝑚 features 𝑋1, ..., 𝑋𝑚, and 𝑋1 is the sensitive feature to be inferred. Then, given partial information 
about a data instance x (e.g., values of features 𝑋2, ..., 𝑋𝑛), and its predictive label �̂� by a machine learning model 𝑓 , it is to infer the 
value for sensitive feature 𝑋1.

We write 𝑥𝑖 as the 𝑖-th element of x. The following formula expresses that the input x, with the feature 𝑋1 being 𝑥1, is on the 
data distribution, i.e.,

𝜙1
𝑖𝑛𝑣(x[𝑋1 ← 𝑥1],d) ≜ ∃𝑦 ∶ 𝜙1

𝑚𝑒𝑚(x[𝑋1 ← 𝑥1], 𝑦,d) (28)

Note that, we quantify away the label 𝑦 because any label 𝑦 satisfying 𝜙1
𝑚𝑒𝑚(x[𝑋1 ← 𝑥1], 𝑦, d) will be sufficient.

Now, assume that we have two datasets d1 and d2, and two input instances x and x′ whose only difference is on the feature 𝑋1, 
we define

𝜙2
𝑖𝑛𝑣 ≜𝐷𝐾𝐿(𝑃 (𝑊 |d1), 𝑃 (𝑊 |d2)) < 𝜖2,𝑙

𝑖𝑛𝑣
⇒ |𝑥1 − 𝑥′1| < 𝜖2,𝑟

𝑖𝑛𝑣
(29)

which expresses that, as long as the posterior distributions are close to each other, the values of the sensitive feature 𝑋1 are also 
close to each other.

Finally, the resistance to the model inversion is to find the smallest number 𝑘 such that the following formula 𝜙𝑖𝑛𝑣(𝑘) holds:

𝜙3
𝑖𝑛𝑣

(d𝑎𝑑𝑣) ≜ ∀d1∀d2 ∶ ((d1 ⊆ d𝑎𝑑𝑣 ∧ d2 ⊆ d𝑎𝑑𝑣 ∧ 𝜙2
𝑠𝑡𝑒(d1) ∧ 𝜙2

𝑠𝑡𝑒(d2))⇒
∀𝑥1∀𝑥2 ∶ ((𝜙1

𝑖𝑛𝑣
(x[𝑋1 ← 𝑥1],d1) ∧ 𝜙1

𝑖𝑛𝑣
(x[𝑋1 ← 𝑥′1],d2))⇒ 𝜙2

𝑖𝑛𝑣
)) (30)

Intuitively, the second line of Equation (30) says that, as long as x[𝑋1 ← 𝑥1] is on the same distribution with d1, and x[𝑋1 ← 𝑥′1] is 
on the same distribution with d2, the similarity of two posterior distributions (i.e., 𝐷𝐾𝐿(𝑃 (𝑊 |d1), 𝑃 (𝑊 |d2)) < 𝜖2,𝑙

𝑖𝑛𝑣
) will lead to the 

requirement that the two values of feature 𝑋1, i.e., 𝑥1 and 𝑥′1, are very close. In other words, obtaining any dataset of size 𝑘 will 
lead to an unambiguous inference of the feature 𝑋1.

Finally, the resistance to the model inversion attack is to determine the largest 𝑘 such that the following formula holds:

𝜙𝑖𝑛𝑣(d𝑎𝑑𝑣) ≜□𝜙3
𝑖𝑛𝑣(d𝑎𝑑𝑣) (31)

to make sure that the model inversion attack can never succeed.

5.9. Interpretability

There are many different definitions of interpretability. Here, we follow a popular definition that maps an 𝑛-dimensional instance 
x into a weighted map 𝑒𝑥𝑝(x) ∶ {1, ..., 𝑛} → [0, 1] on the input features. The weighted map 𝑒𝑥𝑝(x) can then be displayed as a saliency 
map, as the explanation of the decision made by the machine learning model on x. The weighted map can be normalised into a 
probability distribution, and we assume so in the following discussion.

First, we may require as a criterion of a good explanation that the output of the neural network does not have a major change 
(expressed as the 𝐿∞ norm distance less than a constant 𝜖1

𝑖𝑛𝑡
) when masking less important input features according to the weighted 

map x. Formally, we let

𝜙1
𝑖𝑛𝑡(x) ≜ 𝕍x′∈𝑀𝑢𝑡𝑒𝑥𝑝(x)(x)(||𝑃 (𝑌 |x′,w) − y||∞) < 𝜖1𝑖𝑛𝑡 (32)

where 𝑀𝑢𝑡𝑒𝑥𝑝(x)(x) is a set of mutations that mask less important input features from x according to the weighted map 𝑒𝑥𝑝(x). We 
may require the masking of important features to lead to a significant change in the predictive output, and we omit the details for 
the space limitation.

Beyond the correctness criterion as set up in Equation (32), there is also research on requiring the robustness of explanations, i.e.,

𝜙2
𝑖𝑛𝑡(x) ≜ ∀r ∶ ||r||2 ≤ 𝑐 ⇒𝐷𝐾𝐿(𝑒𝑥𝑝(x + r), 𝑒𝑥𝑝(x)) < 𝜖2𝑖𝑛𝑡 (33)

which states that the explanation, expressed as a probability distribution 𝑒𝑥𝑝(x), does not change significantly when subject to 
perturbations.

Finally, a specification for the interpretability of an instance x by a weighted map 𝑒𝑥𝑝(x) can be expressed as follows:
11

𝜙𝑖𝑛𝑡(x) ≜□(inference ⇒ 𝜙1
𝑖𝑛𝑡(x) ∧ 𝜙2

𝑖𝑛𝑡(x)) (34)
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5.10. Fairness

Fairness concerns whether certain sensitive features may have a causality relation with the decision-making. Without loss of 
generality, we assume 𝑋1 is the sensitive feature. Then, the fairness can somewhat be re-stated as that the predictive distribution of 
letting the sensitive feature 𝑋1 have the value 𝑥1 is the same as the predictive distribution of letting the sensitive feature 𝑋1 have 
the value 𝑥′1, i.e.,

𝜙1
𝑓𝑎𝑖

(w,x) ≜ ∀𝑥1∀𝑥′1 ∶𝐷𝐾𝐿(𝑃 (𝑌 |x[𝑋1 ← 𝑥1],w), 𝑃 (𝑌 |x[𝑋1 ← 𝑥′1],w)) < 𝜖𝑓𝑎𝑖 (35)

for 𝜖𝑓𝑎𝑖 a small constant. Intuitively, this means that any value of 𝑋1 does not make a noticeable difference. Similar as the previous 
properties, we may write

𝜙𝑓𝑎𝑖(w,x) ≜□(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ⇒ 𝜙1
𝑓𝑎𝑖

(w,x)) (36)

to ensure that the fairness can be preserved whenever a new perception component is trained.

6. Verification of properties

From the language MLS2, we can see that most of the constructs can be easily evaluated. For example, 𝑃 (𝑌 |x, w) can be obtained 
by simply querying the model of a wight matrix w with the input x, and 𝔼𝑣(𝛾) and 𝕍𝑣(𝛾) can be obtained by enumerating over all 
elements in the finite set if we know how to evaluate 𝛾 . Nevertheless, a few other constructs might require significant computational 
effort to evaluate, which we will discuss below.

6.1. Estimation of posterior distribution 𝑃 (𝑊 |d) through MCMC

MCMC is a family of algorithms to sample a probability distribution usually defined in a high-dimensional space. These algorithms 
perform Monte Carlo estimates by constructing a Markov chain with the desired distribution as its stationary distribution. The more 
samples we draw, the more closely the distribution of the samples matches the desired distribution.

Given an unknown distribution 𝑃 (𝑊 |d), different MCMC algorithms will construct Markov chains with different probability 
transition matrices. In the following, we briefly describe the Metropolis-Hastings algorithm, the most common MCMC algorithm, and 
the Markov chain constructed by this algorithm.

A Markov chain is a tuple 𝑀(𝑊 |d) = (𝑆, w0, 𝑇 , 𝐿), where 𝑆 is a set of states, w0 ∈ 𝑆 is an initial state, 𝑇 ∶ 𝑆 × 𝑆 → [0, 1] is a 
probability transition matrix, and 𝐿 is a labelling function. The construction of 𝑀(𝑊 |d) proceeds by first sampling w0 from 𝑃 (𝑊 |d)
as the initial state, and then gradually adding states w𝑛+1 to 𝑆 and updating the transition matrix 𝑇 until it converges. Let 𝐻 be a 
transition matrix for any irreducible Markov chain whose state space supports of 𝑃 (𝑊 |d). Suppose the last sample we draw is w𝑛. 
We generate a new sample w𝑛+1 as follows:

1. Choose a proposal state w′ according to the probability distribution given by 𝐻(w′|w𝑛).
2. Calculate the acceptance probability of the proposal w′ as

𝐴(w′|w𝑛) = min
(
1,

𝑃 (w′|d)𝐻(w𝑛|w′)
𝑃 (w𝑛|d)𝐻(w′|w𝑛)

)
3. Let 𝑢 ∼Uniform([0, 1]). Accept the proposed value as the new sample if 𝑢 ≤𝐴(w′|w𝑛), that is, let w𝑛+1 = w′. Reject the proposed 

value otherwise, that is, let w𝑛+1 = w𝑛.

The probability transition matrix 𝑇 of the Markov chain constructed by the Metropolis-Hastings algorithm has the following 
probability transition matrix:

𝑇 (w′|w) =
{

𝐻(w′|w)𝐴(w′|w) if w ≠ w′

1 −
∑

w≠w′ 𝐻(w′|w)𝐴(w′|w) otherwise

This Markov chain satisfies (1) the uniqueness of the stationary distribution and (2) the detailed balance convening the desired 
distribution 𝑃 (𝑊 |d), that is, 𝑇 (w′|w)𝑃 (w|d) = 𝑇 (w|w′)𝑃 (w′|d). These conditions guarantee that the constructed Markov chain has 
the desired distribution 𝑃 (𝑊 |d) as its stationary distribution. MCMC algorithms, such as simulated annealing, can converge to a 
global optimum.

6.2. Estimation of posterior distribution 𝑃 (𝑊 |d) through variational inference

MCMC can be computationally expensive when dealing with large dimensional problems. In this case, we may consider an 
alternative approach, i.e., variational inference (VI), which casts the computation of the distribution 𝑃 (𝑊 |d) as an optimisation 
problem. VI assumes a class of tractable distributions  and intends to find a 𝑞(𝑊 ) ∈ that is closest to 𝑃 (𝑊 |d). Once we have the 
12

distribution 𝑞(𝑊 ), we can use it for any computation that involves 𝑃 (𝑊 |d).
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We use the KL divergence to measure the distance between 𝑞(𝑊 ) and 𝑃 (𝑊 |d). Formally, we have the following:

𝐷𝐾𝐿(𝑞(𝑊 )||𝑃 (𝑊 |d))
= ∫ 𝑞(𝑊 ) log 𝑞(𝑊 )

𝑃 (𝑊 |d)𝑑𝑊

= 𝔼𝑞(𝑊 )(log
𝑞(𝑊 )

𝑃 (𝑊 |d) )
= 𝔼𝑞(𝑊 )(log

𝑞(𝑊 )
𝑃 (d|𝑊 )𝑃 (𝑊 )

𝑃 (d))

= 𝔼𝑞(𝑊 )(log
𝑞(𝑊 )

𝑃 (d|𝑊 )𝑃 (𝑊 )
) + log𝑃 (d)

=𝐷𝐾𝐿(𝑞(𝑊 )||𝑃 (𝑊 )) − 𝔼𝑞(𝑊 )(log𝑃 (d|𝑊 )) + log𝑃 (d)

(37)

To minimise this, we can minimise the negative log evidence lower bound

𝑉 𝐼 =𝐷𝐾𝐿(𝑞(𝑊 )||𝑃 (𝑊 )) − 𝔼𝑞(𝑊 )(log𝑃 (d|𝑊 )) (38)

The expectation value 𝔼𝑞(𝑊 )(log𝑃 (d|𝑊 )) can be approximated with Monte Carlo integration. Therefore, the optimisation

𝑞(W) ≜ argmin
𝑞(𝑊 )∈

𝑉 𝐼 (39)

can be conducted by iteratively improving a candidate 𝑞(𝑊 ) until convergence. There are GO algorithms for VI, such as [46], which 
guarantees to converge to the 𝜖-global variational lower bound on the log-likelihood.

The computational complexity of VI depends on the distribution class . For example, suppose it is mean field approximation. In 
this case, the complexity is in polynomial time concerning the number of input features. If it is Gaussian process, the complexity is 
exponential for the number of input features.

6.3. Estimation of data distribution  and distribution of predictive labels 𝑃 (𝑌 |d, w)

The estimation of data distribution  usually is based on a set of known data points {(x1, 𝑦1), ..., (x𝑛, 𝑦𝑛)}. This can be done 
through, e.g., Kernel density estimation. We have

̂(x) = 1
𝑛ℎ

𝑛∑
𝑖=1

𝐾(
x − x𝑖

ℎ
) (40)

𝐾 is a non-negative function called the kernel, and ℎ > 0 is a smoothing parameter called the bandwidth. The normal kernel is 
often used, where 𝐾(𝑥) is the standard normal density function. In this case, the obtained estimation ̂(x) is a multivariate Gaussian 
mixture model. GO methods for KDE, such as [47], can converge to a global optimum.

The distribution 𝑃 (𝑌 |d, w) of predictive labels can also be estimated in this way as having the known data points {�̂�|(x, 𝑦) ∈ d}, 
where �̂� is the predictive label of x over network parameterised with w.

6.4. 𝔼𝑢(𝛾) or 𝕍𝑢(𝛾)

Given 𝑢 can be either w ∼ 𝑃 (𝑊 |d) or (x, 𝑦) ∼, and we have suggested in Sections 6.1, 6.2, and 6.3 a few methods to estimate 
distributions 𝑃 (𝑊 |d) and  with error bounds, the expressions 𝔼𝑢(𝛾) and 𝕍𝑢(𝛾) can be evaluated.

6.5. 𝐷𝐾𝐿(𝜇, 𝜇) or ||𝜇 − 𝜇||𝑝
A direct computation of the KL divergence or the norm distance of two unknown high-dimensional distributions, such as the 

posterior distributions, will be hard. However, we can apply VI to estimate two distributions 𝑞1(W) and 𝑞2(W), one for each of the 
distributions. Then, because 𝑞1(W) and 𝑞2(W) are known, we can compute KL divergence analytically. Alternatively, we can compute 
two Markov chains 𝑀1 and 𝑀2 with MCMC and then their distance.

6.6. ∃t and ∀t

The quantifiers ∃t and ∀t will cause a significant increase in computational complexity when they are alternating and when t
represents a high-dimensional variable for either an input x or a set of inputs d. We note that the properties in the previous section 
require at most one alternating between ∃ and ∀.

In robustness verification, GO has been applied in, e.g., [35,14–16,36], but it is mainly for t to represent an input x. For the cases 
where t represents the output 𝑦, for example, Equation (15), we can enumerate all possible values of 𝑦, as the class 𝐶 is usually fixed 
13

and finite. For the cases where t represents a set d of inputs, we can apply similar techniques as in [35,14,36].
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Fig. 7. Forward and reverse diffusion processes.

6.7. Diffusion model

The generative model in deep learning has shown great potential in many fields, especially the latest results from diffusion models, 
such as DALLE2 [48], GLIDE [49], IMAGEN [50]. Diffusion models are two-process models as shown in Fig. 7: a forward process 
(with noise added) and a reverse process (with noise removed). A certain amount of noise is added to the input in T steps through 
the forward process. The input data will become a standard normal distribution when T is large enough. After this, new inputs can be 
produced by sampling from the obtained normal distribution and denoising procedures. Typical diffusion models include denoising 
diffusion probability models (DDPM) [51] and denoising score matching [52,53]. Here, we introduce the former as an example.

Forward diffusion process Specifically, DDPM can be regarded as a T-step Markov chain. Let x𝑡 denote the sample at time t. x𝑡 is 
obtained from x𝑡−1 by adding the following Gaussian noise:

𝑞(x𝑡|x𝑡−1) = (x𝑡;
√
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡𝐈)

where 𝛽𝑡 ∈ [0, 1] is the variance and controls the step size (in practice, 𝛽𝑡 is monotonic over 𝑡, i.e., 𝛽1 < 𝛽2 <⋯ < 𝛽𝑇 ). Thanks to some 
nice properties [51], the samples at any time can be expressed explicitly by the input as follows:

x𝑡 =
√

�̄�𝑡x0 +
√
1 − �̄�𝑡𝜖

where 𝛼𝑡 is a constant equal to Π𝑖=𝑡
𝑖=1(1 − 𝛽𝑖) and 𝜖 ∼ (0, 𝐈).

Reverse diffusion process Contrary to the forward process, the reverse process is a denoising process. It is proved [54] that as long as 
𝛽𝑡 is small enough, the reverse conditional probability 𝑞(x𝑡−1|x𝑡) is also a Gaussian distribution. However, it is difficult to calculate 
and usually is transformed and simplified into a noise prediction problem, that is, the noise added at time t steps. This is achieved 
by training a neural network (parameterised by 𝜃) by repeatedly taking inputs from the dataset and doing the following steps until 
it converges: i) first uniformly sample 𝑡 from [1, 𝑇 ]; ii) second sample a value 𝜖 from  (0, 𝐈); then take gradient descent step on 
∇𝜃||𝜖 − 𝜖𝜃(

√
�̄�𝑡x0 +

√
1 − �̄�𝑡𝜖, 𝑡)||2.

After training, new samples can be generated as follows: i) first sample a noise x𝑇 ∼ (0, I); ii) second, for 𝑡 ∈ [𝑇 , 1] do 𝜖 ∼ (0, I)
if 𝑡 > 1 else 𝜖 = 0 and calculate x𝑡−1 =

1√
�̄�𝑡
(x𝑡 −

1−𝛼𝑡√
1−�̄�𝑡

𝜖𝜃(x𝑡, 𝑡)) + 𝜎𝑡𝜖; iii) finally return x0.

In short, the core of this algorithm is to design the noise added at each step in the forward diffusion process and then train a 
network to predict this noise so that one can sample from the standard normal distribution and generate new samples through a 
series of noise-removing calculations.

Application of diffusion models in verification We discuss how to use the diffusion models to support the verification. The diffusion 
model is a generative model for x, where we can instantiate x by either a model, an input, or a set of inputs. The diffusion model 
will allow us to resolve the quantifiers ∃ and ∀. Suppose such a generative model can be obtained for an object of interest. In that 
case, some system properties can be statistically verified by proposing some hypothesis on the considered objects and then using 
the generative model to generate data for the statistical test. Consider a concrete example that verifies whether the generalisation 
of an object detection module in an autonomous driving system is sufficiently good for corner cases. To this end, a corner case 
dataset needs to be designed according to some requirements, such as being fair enough regarding the number and diversity of 
scenes. A possible solution is as follows: i) first, design such a generative model based on the limited existing data; 2) second, use 
this generative model as a simulator (sampling from the z latent space in Fig. 7) to perform hypothesis testing on the generalisation 
ability of the considered object detector model to corner cases; 3) finally, one can analyse the hypothesis testing results and conclude 
if the generalisation is good enough or not. In addition, it can also be an alternative technique for the posterior distribution 𝑃 (𝑊 |d).
6.8. Error bounds

MCMC and VI, as statistical methods, are subject to errors, unlike formal proofs that yield binary answers. Nevertheless, errors 
can be theoretically bounded. The accuracy measure and error bounds of MCMC have been well studied. See, for example, Chapter 
12 of [55]. While the classic variational inference (VI) is usually criticised for its lack of theoretically justified post-hoc accuracy 
measures, some recent research shows that it is possible to have validated variational inference with mild assumptions and improved 
workflow. For example, [56] shows that rigorous bounds on the error can be obtained using their improved workflow.
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For KDE, the discussion on its error bound can be found in textbooks such as [57].
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7. Related works

We review some work that formalises the specification for learning-enabled autonomous systems. [58] formalises requirements 
for the runtime verification of an autonomous unmanned aircraft system based on an extension of propositional LTL, where temporal 
operators are augmented with timing constraints. It uses atomic propositions such as “ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 250” to express 
the result of the perception module without considering the sensory input and the possible failure of getting the exact value for the 
variable ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒. [41] introduces a specification language based on LTL, which utilises event-based abstraction 
to hide the details of the neural network structure and parameters. It starts considering the potential failure of the perception 
component and uses a predicate 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛(x) to express if x is a pedestrian (referring to the ground truth). However, it does not 
consider the predicate’s potential vulnerabilities, such as robustness and uncertainty. [59] proposes Timed Quality Temporal Logic 
(TQTL) to express monitorable [60] spatio-temporal quality properties of perception systems based on neural networks. It considers 
object detectors such as YOLO and uses for example 𝐷0 ∶ 𝑑1 ∶ (𝐼𝐷, 1), (𝑐𝑙𝑎𝑠𝑠, 𝑐𝑎𝑟), (𝑝𝑟, 0.9), (𝑏𝑏, 𝐵1) to denote an object 𝑑1 in a frame 
𝐷0 such that it has an index 1, a predictive label 𝑐𝑎𝑟, the prediction probability 0.9, and is in a bounding box 𝐵1. Therefore, 
every state may include multiple such expressions and then a TQTL formula can be written by referring to the components of the 
expressions in a state. Unlike previous attempts, our specification language for machine learning considers not only the functionality 
(i.e., the relation between input and output) of a trained model but also the training process (where objects such as training datasets, 
model parameters, and distance between posterior distributions are considered). With this, the language can express the safety and 
security properties that describe the attacks during the lifecycle stages.

We also mention the current efforts on the verification of deep learning. The algorithms can be roughly categorised into constraint-

solving based methods [11], abstract interpretation based methods [31,32], global optimisation based methods [10,14,34], and 
game-based methods [35,36]. However, these works are focused on robustness, and it is unclear whether and how the techniques 
can be extended to consider other properties described with MLS2.

8. Conclusions

This paper makes an attempt to use a formal specification language to describe ten different safety and security properties of 
machine learning models. The language can describe input-output relations and the relations between training data and trained 
models. To verify properties expressed with the language, we suggest global optimisation methods to deal with basic constructs such 
as posterior distributions. We hope this forms a new step toward the communication between formal methods and machine learning.

This new step opens many opportunities for the future exploration of this topic. The first is to figure out algorithms with lower 
computational complexity in theory. Two aspects that require attention, one on the estimation of the posterior distribution 𝑃 (𝑊 |d)
and the other on the quantifier ∀t. For 𝑃 (𝑊 |d), it is highly dimensional due to the sizes of d and 𝑊 , which will render the estimation 
algorithms such as MCMC and VI become less accurate. For ∀t, we need to consider all possible instantiations of t, which can have a 
very significant number considering the high dimensionality of t. Even if a theoretical improvement cannot be achieved, any practical 
method to reduce computational intensiveness would also help. The second is to figure out the error bounds for any specification 
formula of MLS2. The discussion on the error bounds in Section 6.8 is only for the atomic propositions, and we still need to know 
how the error bounds propagate through the operators in MLS2.

CRediT authorship contribution statement

Saddek Bensalem: Conceptualization, Formal analysis, Writing – review & editing. Xiaowei Huang: Conceptualization, Method-

ology, Writing – original draft, Writing – review & editing. Wenjie Ruan: Methodology, Writing – review & editing. Qiyi Tang:

Formal analysis, Methodology, Writing – original draft, Writing – review & editing. Changshun Wu: Formal analysis, Methodology, 
Writing – original draft, Writing – review & editing. Xingyu Zhao: Formal analysis, Methodology, Writing – original draft, Writing – 
review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing 
interests: Xiaowei Huang reports financial support was provided by EU Framework Programme for Research and Innovation Euratom. 
Xiaowei Huang reports financial support was provided by Engineering and Physical Sciences Research Council. Saddek Bensalem 
reports financial support was provided by EU Framework Programme for Research and Innovation Euratom.

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant 
agreement No 956123. Moreover, XH is also supported by the UK EPSRC under projects [EP/R026173/1, EP/T026995/1].

References
15

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing properties of neural networks, in: ICLR, Citeseer, 2014.

http://refhub.elsevier.com/S2352-2208(23)00095-0/bib52F5021BF267CDFBF2AEB1155F26711Es1


Journal of Logical and Algebraic Methods in Programming 137 (2024) 100941S. Bensalem, X. Huang, W. Ruan et al.

[2] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea, C. Nita-Rotaru, F. Roli, Why do adversarial attacks transfer? Explaining transferability of 
evasion and poisoning attacks, in: 28th USENIX Security Symposium (USENIX Security 19), USENIX Association, Santa Clara, CA, 2019, pp. 321–338, https://

www .usenix .org /conference /usenixsecurity19 /presentation /demontis.

[3] T. Orekondy, B. Schiele, M. Fritz, Knockoff nets: stealing functionality of black-box models, in: IEEE Conference on Computer Vision and Pattern Recognition, 
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, Computer Vision Foundation / IEEE, 2019, pp. 4954–4963.

[4] Z. Yang, J. Zhang, E.-C. Chang, Z. Liang, Neural network inversion in adversarial setting via background knowledge alignment, in: Proc. of the 2019 ACM 
SIGSAC Conference on Computer and Communications Security, CCS ’19, ACM, New York, NY, USA, 2019, pp. 225–240.

[5] X. Yin, W. Ruan, J. Fieldsend, Dimba: discretely masked black-box attack in single object tracking, Mach. Learn. (2022) 1–19.

[6] R. Mu, W. Ruan, L. Soriano Marcolino, Q. Ni, Sparse adversarial video attacks with spatial transformations, in: The 32nd British Machine Vision Conference 
(BMVC’21), 2021.

[7] Y. Zhang, W. Ruan, F. Wang, X. Huang, Generalizing universal adversarial attacks beyond additive perturbations, in: 2020 IEEE International Conference on 
Data Mining (ICDM’20), IEEE, 2020, pp. 1412–1417.

[8] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu, X. Yi, A survey of safety and trustworthiness of deep neural networks: verification, 
testing, adversarial attack and defence, and interpretability, Comput. Sci. Rev. 37 (2020) 100270, https://doi .org /10 .1016 /j .cosrev .2020 .100270, http://www .
sciencedirect .com /science /article /pii /S1574013719302527.

[9] Wikipedia: V-model, https://en .wikipedia .org /wiki /V -model #cite _note -FHWA _05 -1.

[10] X. Huang, M. Kwiatkowska, S. Wang, M. Wu, Safety verification of deep neural networks, in: International Conference on Computer Aided Verification, Springer, 
2017, pp. 3–29.

[11] G. Katz, C. Barrett, D.L. Dill, K. Julian, M.J. Kochenderfer, Reluplex: an efficient SMT solver for verifying deep neural networks, in: International Conference on 
Computer Aided Verification, Springer, 2017, pp. 97–117.

[12] D.R. Jones, C.D. Perttunen, B.E. Stuckman, Lipschitzian optimization without the Lipschitz constant, J. Optim. Theory Appl. 79 (1993) 157–181.

[13] D.R. Jones, J.R.R.A. Martins, The DIRECT algorithm: 25 years later, J. Glob. Optim. 79 (3) (2021) 521–566.

[14] W. Ruan, X. Huang, M. Kwiatkowska, Reachability analysis of deep neural networks with provable guarantees, in: IJCAI, 2018, pp. 2651–2659.

[15] F. Wang, P. Xu, W. Ruan, X. Huang, Towards verifying the geometric robustness of large-scale neural networks, in: Proceedings of the AAAI Conference on 
Artificial Intelligence (AAAI’23), 2023.

[16] C. Zhang, W. Ruan, P. Xu, Reachability analysis of neural network control systems, in: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’23), 
2023.

[17] J. Musa, Operational profiles in software-reliability engineering, IEEE Softw. 10 (2) (1993) 14–32.

[18] X. Zhao, W. Huang, A. Banks, V. Cox, D. Flynn, S. Schewe, X. Huang, Assessing reliability of deep learning through robustness evaluation and operational testing, 
in: AISafety2021, 2021.

[19] Y. Dong, W. Huang, V. Bharti, V. Cox, A. Banks, S. Wang, X. Zhao, S. Schewe, X. Huang, Reliability assessment and safety arguments for machine learning 
components in system assurance, ACM Trans. Embed. Comput. Syst. (2022), https://doi .org /10 .1145 /3570918.

[20] K. Fukunaga, Introduction to Statistical Pattern Recognition, Elsevier, 2013.

[21] B. Littlewood, J. Rushby, Reasoning about the reliability of diverse two-channel systems in which one channel is “possibly perfect”, IEEE Trans. Softw. Eng. 
38 (5) (2012) 1178–1194.

[22] J. Rushby, Software verification and system assurance, in: 7th Int. Conf. on Software Engineering and Formal Methods, IEEE, Hanoi, Vietnam, 2009, pp. 3–10.

[23] S.S. Du, J.D. Lee, H. Li, L. Wang, X. Zhai, Gradient descent finds global minima of deep neural networks, arXiv e-prints, arXiv :1811 .03804, 2018.

[24] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep learning models resistant to adversarial attacks, in: ICLR’18, 2018.

[25] G. Jin, X. Yi, L. Zhang, L. Zhang, S. Schewe, X. Huang, How does weight correlation affect the generalisation ability of deep neural networks, in: NeurIPS’20, 
2020.

[26] G. Jin, X. Yi, W. Huang, S. Schewe, X. Huang, Enhancing adversarial training with second-order statistics of weights, in: CVPR2022, 2022.

[27] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, D. Kroening, Concolic testing for deep neural networks, in: Automated Software Engineering (ASE), 33rd 
IEEE/ACM International Conference on, 2018.

[28] Y. Sun, X. Huang, D. Kroening, Testing deep neural networks, CoRR, arXiv :1803 .04792 [abs], 2018.

[29] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, D. Kroening, Deepconcolic: testing and debugging deep neural networks, in: 41st ACM/IEEE Int. Conf. on 
Software Engineering (ICSE’19), 2019.

[30] W. Huang, Y. Sun, X. Zhao, J. Sharp, W. Ruan, J. Meng, X. Huang, Coverage-guided testing for recurrent neural networks, IEEE Trans. Reliab. 71 (3) (2022) 
1191–1206, https://doi .org /10 .1109 /TR .2021 .3080664.

[31] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, M. Vechev, AI2: safety and robustness certification of neural networks with abstract 
interpretation, in: Security and Privacy (SP), 2018 IEEE Symposium on, 2018.

[32] J. Li, J. Liu, P. Yang, L. Chen, X. Huang, L. Zhang, Analyzing deep neural networks with symbolic propagation: towards higher precision and faster verification, 
in: SAS2019, 2019, pp. 296–319.

[33] R. Mu, W. Ruan, L.S. Marcolino, Q. Ni, 3dverifier: efficient robustness verification for 3d point cloud models, Mach. Learn. (2022) 1–28.

[34] W. Ruan, M. Wu, Y. Sun, X. Huang, D. Kroening, M. Kwiatkowska, Global robustness evaluation of deep neural networks with provable guarantees for the 
Hamming distance, in: IJCAI2019, 2019, pp. 5944–5952.

[35] M. Wicker, X. Huang, M. Kwiatkowska, Feature-guided black-box safety testing of deep neural networks, in: International Conference on Tools and Algorithms 
for the Construction and Analysis of Systems, Springer, 2018, pp. 408–426.

[36] M. Wu, M. Wicker, W. Ruan, X. Huang, M. Kwiatkowska, A game-based approximate verification of deep neural networks with provable guarantees, Theor. 
Comput. Sci. (2020).

[37] P. Bishop, A. Povyakalo, Deriving a frequentist conservative confidence bound for probability of failure per demand for systems with different operational and 
test profiles, Reliab. Eng. Syst. Saf. 158 (2017) 246–253.

[38] R. Pietrantuono, P. Popov, S. Russo, Reliability assessment of service-based software under operational profile uncertainty, Reliab. Eng. Syst. Saf. 204 (2020) 
107193.

[39] K. Salako, L. Strigini, X. Zhao, Conservative confidence bounds in safety, from generalised claims of improvement & statistical evidence, in: 51st Annual IEEE/IFIP 
International Conference on Dependable Systems and Networks, DSN’21, IEEE/IFIP, Taipei Taiwan, 2021, pp. 451–462.

[40] J. Anderson, M. Hekmatnejad, G. Fainekos, Pyforel: a domain-specific language for formal requirements in temporal logic, in: 2022 IEEE 30th International 
Requirements Engineering Conference (RE), 2022, pp. 266–267.

[41] S. Bensalem, C.-H. Cheng, X. Huang, P. Katsaros, A. Molin, D. Nickovic, D. Peled, Formal specification for learning-enabled autonomous systems, in: FoMLAS2022, 
2022.

[42] C. Huang, Z. Hu, X. Huang, K. Pei, Statistical certification of acceptable robustness for neural networks, in: I. Farkaš, P. Masulli, S. Otte, S. Wermter (Eds.), 
Artificial Neural Networks and Machine Learning – ICANN 2021, Springer International Publishing, Cham, 2021, pp. 79–90.

[43] T. Zhang, W. Ruan, J.E. Fieldsend, Proa: a probabilistic robustness assessment against functional perturbations, in: Joint European Conference on Machine 
Learning and Knowledge Discovery in Databases (ECML/PKDD’22), 2022.

[44] P. Xu, W. Ruan, X. Huang, Towards the quantification of safety risks in deep neural networks, CoRR, arXiv :2009 .06114 [abs], 2020, arXiv :2009 .06114, https://
16

arxiv .org /abs /2009 .06114.

https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib464A273D5C937B4D799583675257E6BCs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib464A273D5C937B4D799583675257E6BCs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib093C44061D94266A18C5C99F1C17A2FCs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib093C44061D94266A18C5C99F1C17A2FCs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib1C92EF61E8B6E8624D9CE6DE58B302B5s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibCDCA6915589F7E0716B3D99A51DEA12Cs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibCDCA6915589F7E0716B3D99A51DEA12Cs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibAE4450EAB9205B6A05A24E36BF5AB9DBs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibAE4450EAB9205B6A05A24E36BF5AB9DBs1
https://doi.org/10.1016/j.cosrev.2020.100270
http://www.sciencedirect.com/science/article/pii/S1574013719302527
http://www.sciencedirect.com/science/article/pii/S1574013719302527
https://en.wikipedia.org/wiki/V-model#cite_note-FHWA_05-1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib987C96FBC668507C9A0074A4E3A99639s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib987C96FBC668507C9A0074A4E3A99639s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib6A408CEDD0ADF005C41C6C602E46B00Bs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib6A408CEDD0ADF005C41C6C602E46B00Bs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib911059ECC94FF4072B00DE2C0E495ADEs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib65F322F10DABF6DF5CD7788B64847AC9s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib76504A556C4CB45DC0BC8DCDA307AA94s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib53AE878E9C48517BCDAA69308B04292Es1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib53AE878E9C48517BCDAA69308B04292Es1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib946C57C7CD1750C626FE8841FF6BA137s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib946C57C7CD1750C626FE8841FF6BA137s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib173C6CC3835BF556DF8093E7FB721548s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib45F3EBA52C3D9CD8BF3244B22983BDEAs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib45F3EBA52C3D9CD8BF3244B22983BDEAs1
https://doi.org/10.1145/3570918
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib0DE113136D35733F4AF215B9CBC47B50s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibDBAC7769DAB6D5243108241CC0F19D72s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibDBAC7769DAB6D5243108241CC0F19D72s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib1A8111CDE2ACE90E10B085E4BEF35C32s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib48FFE6BFF071CDAA34067172558521ADs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibDE39DBB3CFEF4025DB9A5B1539634DBEs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib9E772ED62FBC5E89EE480AA5DF78FFAFs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib9E772ED62FBC5E89EE480AA5DF78FFAFs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib55A20B46A284F40C271FE2898795BAA2s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibEADEBA685DA9B5127792F1CEB7C099EAs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibEADEBA685DA9B5127792F1CEB7C099EAs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib561501B8FA64A96B46DD36DF29A24AFBs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibD8BA4AAD6EC377EDCB3A9A12B7BA1178s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibD8BA4AAD6EC377EDCB3A9A12B7BA1178s1
https://doi.org/10.1109/TR.2021.3080664
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib1E48DF4E3F9047A7C1D759522E7D1DD9s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib1E48DF4E3F9047A7C1D759522E7D1DD9s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib6F37EEF66A3305A3FEEEDEBEC4A3B2A0s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib6F37EEF66A3305A3FEEEDEBEC4A3B2A0s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib0552922BAC53E98B08A500F20A7ED4B5s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibC6DAF5BCA3EC900D33B528C5D796D69Cs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibC6DAF5BCA3EC900D33B528C5D796D69Cs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib4645D27561C8270331F43C77D658E100s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib4645D27561C8270331F43C77D658E100s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib0B7F389BBF6C5DB4F26D72B466F57963s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib0B7F389BBF6C5DB4F26D72B466F57963s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibDCE853EFC91630663E58FFFD03A51808s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibDCE853EFC91630663E58FFFD03A51808s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib409DD7FAEA976938E551053D18217997s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib409DD7FAEA976938E551053D18217997s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib9E3FFD17A360BDC837336F64DA89EE34s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib9E3FFD17A360BDC837336F64DA89EE34s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibDFD35E5FE84926CA2B4FE8E1C4134229s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibDFD35E5FE84926CA2B4FE8E1C4134229s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib0F55517F2D8D9D5B2CF848A1E1BCC4BBs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib0F55517F2D8D9D5B2CF848A1E1BCC4BBs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibD34A92E1BF0C71BC05A43724D0E9B565s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibD34A92E1BF0C71BC05A43724D0E9B565s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibD8A39B4AD1FB9B4313AABA2EF3FBE308s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibD8A39B4AD1FB9B4313AABA2EF3FBE308s1
https://arxiv.org/abs/2009.06114
https://arxiv.org/abs/2009.06114


Journal of Logical and Algebraic Methods in Programming 137 (2024) 100941S. Bensalem, X. Huang, W. Ruan et al.

[45] P. Xu, W. Ruan, X. Huang, Quantifying safety risks of deep neural networks, Complex Intell. Syst. (2022).

[46] H. Saddiki, A.C. Trapp, P. Flaherty, A deterministic global optimization method for variational inference, https://doi .org /10 .48550 /ARXIV .1703 .07169, 2017, 
https://arxiv .org /abs /1703 .07169.

[47] O. Wirjadi, T. Breuel, A branch and bound algorithm for finding the modes in kernel density estimates, Int. J. Comput. Intell. Appl. 08 (01) (2009) 17–35, 
https://doi .org /10 .1142 /S1469026809002461, arXiv:https://doi .org /10 .1142 /S1469026809002461.

[48] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, M. Chen, Hierarchical text-conditional image generation with clip latents, arXiv preprint, arXiv :2204 .06125, 2022.

[49] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, M. Chen, Glide: towards photorealistic image generation and editing with 
text-guided diffusion models, arXiv preprint, arXiv :2112 .10741, 2021.

[50] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S.K.S. Ghasemipour, B.K. Ayan, S.S. Mahdavi, R.G. Lopes, et al., Photorealistic text-to-image diffusion 
models with deep language understanding, arXiv preprint, arXiv :2205 .11487, 2022.

[51] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, Adv. Neural Inf. Process. Syst. 33 (2020) 6840–6851.

[52] Y. Song, S. Ermon, Generative modeling by estimating gradients of the data distribution, Adv. Neural Inf. Process. Syst. 32 (2019).

[53] S. Lyu, Interpretation and generalization of score matching, arXiv preprint, arXiv :1205 .2629, 2012.

[54] W. Feller, On the theory of stochastic processes, with particular reference to applications, in: Selected Papers I, Springer, 2015, pp. 769–798.

[55] C.P. Robert, G. Casella, Monte Carlo Statistical Methods, Springer, 2004.

[56] J. Huggins, M. Kasprzak, T. Campbell, T. Broderick, Validated variational inference via practical posterior error bounds, in: International Conference on Artificial 
Intelligence and Statistics, 2019.

[57] A.B. Tsybakov, Introduction to Nonparametric Estimation, Springer, 2008.

[58] A. Dutle, C.A. Muñoz, E. Conrad, A. Goodloe, L. Titolo, I. Perez, S. Balachandran, D. Giannakopoulou, A. Mavridou, T. Pressburger, From requirements to 
autonomous flight: an overview of the monitoring ICAROUS project, in: Proc. 2nd Workshop on Formal Methods for Autonomous Systems, in: EPTCS, vol. 329, 
2020, pp. 23–30.

[59] A. Balakrishnan, A.G. Puranic, X. Qin, A. Dokhanchi, J.V. Deshmukh, H. Ben Amor, G. Fainekos, Specifying and evaluating quality metrics for vision-based 
perception systems, in: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2019, pp. 1433–1438.

[60] A. Balakrishnan, J. Deshmukh, B. Hoxha, T. Yamaguchi, G. Fainekos, Percemon: online monitoring for perception systems, in: Runtime Verification, Springer, 
17

Cham, 2021, pp. 297–308.

http://refhub.elsevier.com/S2352-2208(23)00095-0/bib259ED1CA552486BF0FE2BDE60D0B041As1
https://doi.org/10.48550/ARXIV.1703.07169
https://arxiv.org/abs/1703.07169
https://doi.org/10.1142/S1469026809002461
https://doi.org/10.1142/S1469026809002461
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib82A70A51F6AB8F4A2917B169938920F2s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib64F8291C9481973E423395D5DAA5E9BBs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib64F8291C9481973E423395D5DAA5E9BBs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib791ABA20B51F7CCA5D60D1D7F51E4623s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib791ABA20B51F7CCA5D60D1D7F51E4623s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibAE25C4E68D7DCB365F1184E61ECCA0A2s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib71C500C177F7B2B5DB91CA2A02B2DD0Fs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibBF6181C2399D11D928332E18693C0CDEs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibCC2CEF6F924B30236ADB92762E8F13E6s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib2933D75BD9FB0E9B912BE37DFA1EED77s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib0DCF7F1A3351A46BD3019B2182A91B67s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib0DCF7F1A3351A46BD3019B2182A91B67s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib2F307CCD52B406ECAD96FFDCEE6E15FBs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibEAB4568C5C445379D34F5BDFB5148645s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibEAB4568C5C445379D34F5BDFB5148645s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bibEAB4568C5C445379D34F5BDFB5148645s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib733DBA708F3A79565E437C76E3D2EBBDs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib733DBA708F3A79565E437C76E3D2EBBDs1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib03743CC337C23891AFE8B2F657744726s1
http://refhub.elsevier.com/S2352-2208(23)00095-0/bib03743CC337C23891AFE8B2F657744726s1

	Bridging formal methods and machine learning with model checking and global optimisation
	1 Introduction
	2 Preliminaries and V-model for machine learning
	3 A dynamic model for learning-enabled systems
	3.1 Transition relation
	3.1.1 Transitions for attacker to collect data
	3.1.2 Transitions for perception component

	3.2 When perception component protected by statistical verification method
	3.3 When perception component protected by runtime monitor
	3.4 Illustration examples

	4 Specification language
	5 Safety, security, and privacy properties
	5.1 Generalisation
	5.2 Uncertainty
	5.3 Robustness
	5.4 Data poisoning
	5.5 Backdoor
	5.6 Model stealing
	5.7 Membership inference
	5.8 Model inversion
	5.9 Interpretability
	5.10 Fairness

	6 Verification of properties
	6.1 Estimation of posterior distribution P(Wd) through MCMC
	6.2 Estimation of posterior distribution P(Wd) through variational inference
	6.3 Estimation of data distribution and distribution of predictive labels P(푌̂d,w)
	6.4 Eu(γ) or Vu(γ)
	6.5 DKL(μ,μ) or μ−μp
	6.6 ∃t and ∀t
	6.7 Diffusion model
	6.8 Error bounds

	7 Related works
	8 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References


