57 research outputs found

    VOMS, an Authorization System for Virtual Organizations

    Get PDF
    We briefly describe the authorization requirements, focusing on the framework of the DataGrid and DataTAG Projects and illustrate the architecture of a new service we have developed, the Virtual Organization Membership Service (VOMS), to manage authorization information in Virtual Organization scope

    StoRM: A Manager for Storage Resource in Grid

    Get PDF
    Nowadays, data intensive applications demand high-performance and large-storage systems capable of serving up to various Petabytes of storage space. Therefore, common solutions adopted in data centres include Storage Area Networks (SAN) and cluster parallel file systems, such as GPFS from IBM and Lustre from Sun Microsystems. In order to make these storage system solutions available in modern Data Grid architectures, standard interfaces are needed. The Grid Storage Resource Manager (SRM) interface is one of these standard interfaces. Grid storage services implementing the SRM standard provide common capabilities and advanced functionality such as dynamic space allocation and file management on shared storage systems. In this paper, we describe StoRM (STOrage Resource Manager). StoRM is a flexible and high-performing implementation of the standard SRM interface version 2.2. The software architecture of StoRM allows for an easy integration to different underlying storage systems via a plug-in mechanism. In particular, StoRM takes advantage from storage systems based on cluster file systems. Currently, StoRM is installed and used in production in various data centres, including the WLCG Italian Tier-1. In addition, Economics and Financial communities, as represented by the EGRID Project, adopt StoRM in production as well

    A NeISS collaboration to develop and use e-infrastructure for large-scale social simulation

    Get PDF
    The National e-Infrastructure for Social Simulation (NeISS) project is focused on developing e-Infrastructure to support social simulation research. Part of NeISS aims to provide an interface for running contemporary dynamic demographic social simulation models as developed in the GENESIS project. These GENESIS models operate at the individual person level and are stochastic. This paper focuses on support for a simplistic demographic change model that has a daily time steps, and is typically run for a number of years. A portal based Graphical User Interface (GUI) has been developed as a set of standard portlets. One portlet is for specifying model parameters and setting a simulation running. Another is for comparing the results of different simulation runs. Other portlets are for monitoring submitted jobs and for interfacing with an archive of results. A layer of programs enacted by the portlets stage data in and submit jobs to a Grid computer which then runs a specific GENESIS model program executable. Once a job is submitted, some details are communicated back to a job monitoring portlet. Once the job is completed, results are stored and made available for download and further processing. Collectively we call the system the Genesis Simulator. Progress in the development of the Genesis Simulator was presented at the UK e- Science All Hands Meeting in September 2011 by way of a video based demonstration of the GUI, and an oral presentation of a working paper. Since then, an automated framework has been developed to run simulations for a number of years in yearly time steps. The demographic models have also been improved in a number of ways. This paper summarises the work to date, presents some of the latest results and considers the next steps we are planning in this work

    Integrating security solutions to support nanoCMOS electronics research

    Get PDF
    The UK Engineering and Physical Sciences Research Council (EPSRC) funded Meeting the Design Challenges of nanoCMOS Electronics (nanoCMOS) is developing a research infrastructure for collaborative electronics research across multiple institutions in the UK with especially strong industrial and commercial involvement. Unlike other domains, the electronics industry is driven by the necessity of protecting the intellectual property of the data, designs and software associated with next generation electronics devices and therefore requires fine-grained security. Similarly, the project also demands seamless access to large scale high performance compute resources for atomic scale device simulations and the capability to manage the hundreds of thousands of files and the metadata associated with these simulations. Within this context, the project has explored a wide range of authentication and authorization infrastructures facilitating compute resource access and providing fine-grained security over numerous distributed file stores and files. We conclude that no single security solution meets the needs of the project. This paper describes the experiences of applying X.509-based certificates and public key infrastructures, VOMS, PERMIS, Kerberos and the Internet2 Shibboleth technologies for nanoCMOS security. We outline how we are integrating these solutions to provide a complete end-end security framework meeting the demands of the nanoCMOS electronics domain

    Semantic security: specification and enforcement of semantic policies for security-driven collaborations

    Get PDF
    Collaborative research can often have demands on finer-grained security that go beyond the authentication-only paradigm as typified by many e-Infrastructure/Grid based solutions. Supporting finer-grained access control is often essential for domains where the specification and subsequent enforcement of authorization policies is needed. The clinical domain is one area in particular where this is so. However it is the case that existing security authorization solutions are fragile, inflexible and difficult to establish and maintain. As a result they often do not meet the needs of real world collaborations where robustness and flexibility of policy specification and enforcement, and ease of maintenance are essential. In this paper we present results of the JISC funded Advanced Grid Authorisation through Semantic Technologies (AGAST) project (www.nesc.ac.uk/hub/projects/agast) and show how semantic-based approaches to security policy specification and enforcement can address many of the limitations with existing security solutions. These are demonstrated into the clinical trials domain through the MRC funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project (www.nesc.ac.uk/hub/projects/votes) and the epidemiological domain through the JISC funded SeeGEO project (www.nesc.ac.uk/hub/projects/seegeo)

    SciTokens: Capability-Based Secure Access to Remote Scientific Data

    Full text link
    The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. In this paper, we introduce SciTokens, open source software to help scientists manage their security credentials more reliably and securely. We describe the SciTokens system architecture, design, and implementation addressing use cases from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific Collaboration and the Large Synoptic Survey Telescope (LSST) projects. We also present our integration with widely-used software that supports distributed scientific computing, including HTCondor, CVMFS, and XrootD. SciTokens uses IETF-standard OAuth tokens for capability-based secure access to remote scientific data. The access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems.Comment: 8 pages, 6 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    Data privacy by design: digital infrastructures for clinical collaborations

    Get PDF
    The clinical sciences have arguably the most stringent security demands on the adoption and roll-out of collaborative e-Infrastructure solutions such as those based upon Grid-based middleware. Experiences from the Medical Research Council (MRC) funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project and numerous other real world security driven projects at the UK e-Science National e-Science Centre (NeSC – www.nesc.ac.uk) have shown that whilst advanced Grid security and middleware solutions now offer capabilities to address many of the distributed data and security challenges in the clinical domain, the real clinical world as typified by organizations such as the National Health Service (NHS) in the UK are extremely wary of adoption of such technologies: firewalls; ethics; information governance, software validation, and the actual realities of existing infrastructures need to be considered from the outset. Based on these experiences we present a novel data linkage and anonymisation infrastructure that has been developed with close co-operation of the various stakeholders in the clinical domain (including the NHS) that addresses their concerns and satisfies the needs of the academic clinical research community. We demonstrate the implementation of this infrastructure through a representative clinical study on chronic diseases in Scotland
    corecore