458 research outputs found

    JPSS-1 VIIRS Radiometric Characterization and Calibration Based on Pre-Launch Testing

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument has 22 spectral bands covering the spectrum between 0.4 and 12.6 m. It is a cross-track scanning radiometer capable of providing global measurements twice daily, through observations at two spatial resolutions, 375 m and 750 m at nadir for the imaging and moderate bands, respectively. This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the government independent team to generate the at-launch baseline radiometric performance and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), radiance dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, spectral performance, response-vs-scan (RVS), and scattered light response. A set of performance metrics generated during the pre-launch testing program will be compared to both the VIIRS sensor specification and the SNPP VIIRS pre-launch performance

    An Overview of Suomi NPP VIIRS Calibration Maneuvers

    Get PDF
    The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). On-orbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multi-orbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper pro-vides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow-on missions

    Assessment of the NPP VIIRS RVS for the Thermal Emissive Bands Using the First Pitch Maneuver Observations

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key sensor carried on Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) (launched in October 2011). VIIRS sensor design draws on heritage instruments including AVHRR, OLS, SeaWiFS and MODIS. It has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. These on-board calibrators are located at fixed scan angles. The VIIRS response versus scan angle (RVS) was characterized prelaunch in lab ambient conditions and is currently used to characterize the on-orbit response for all scan angles relative to the calibrator scan angle (SD for RSB and blackbody for TEB). Since the RVS is vitally important to the quality of calibrated radiance products, several independent studies were performed to analyze the prelaunch RVS measurement data. A spacecraft level pitch maneuver was scheduled during the first three months of intensive Cal/Val. The NPP pitch maneuver provided a rare opportunity for VIIRS to make observations of deep space over the entire range of scan angles, which can be used to characterize the TEB RVS. This study will provide our analysis of the pitch maneuver data and assessment of the derived TEB RVS. A comparison between the RVS determined by the pitch maneuver observations and prelaunch lab tests will be conducted for each band, detector, and half angle mirror (HAM) sid

    SNPP VIIRS Spectral Bands Co-Registration and Spatial Response Characterization

    Get PDF
    The Visible Infrared Imager Radiometer Suite (VIIRS) instrument onboard the Suomi National Polarorbiting Partnership (SNPP) satellite was launched on 28 October 2011. The VIIRS has 5 imagery spectral bands (I-bands), 16 moderate resolution spectral bands (M-bands) and a panchromatic day/night band (DNB). Performance of the VIIRS spatial response and band-to-band co-registration (BBR) was measured through intensive pre-launch tests. These measurements were made in the non-aggregated zones near the start (or end) of scan for the I-bands and M-bands and for a limited number of aggregation modes for the DNB in order to test requirement compliance. This paper presents results based on a recently re-processed pre-launch test data. Sensor (detector) spatial impulse responses in the scan direction are parameterized in terms of ground dynamic field of view (GDFOV), horizontal spatial resolution (HSR), modulation transfer function (MTF), ensquared energy (EE) and integrated out-of-pixel (IOOP) spatial response. Results are presented for the non-aggregation, 2-sample and 3-sample aggregation zones for the I-bands and M-bands, and for a limited number of aggregation modes for the DNB. On-orbit GDFOVs measured for the 5 I-bands in the scan direction using a straight bridge are also presented. Band-to-band co-registration (BBR) is quantified using the prelaunch measured band-to-band offsets. These offsets may be expressed as fractions of horizontal sampling intervals (HSIs), detector spatial response parameters GDFOV or HSR. BBR bases on HSIs in the non-aggregation, 2-sample and 3-sample aggregation zones are presented. BBR matrices based on scan direction GDFOV and HSR are compared to the BBR matrix based on HSI in the non-aggregation zone. We demonstrate that BBR based on GDFOV is a better representation of footprint overlap and so this definition should be used in BBR requirement specifications. We propose that HSR not be used as the primary image quality indicator, since we show that it is neither an adequate representation of the size of sensor spatial response nor an adequate measure of imaging quality

    Detector Based Calibration of a Portable Imaging Spectrometer for CLARREO Pathfinder Mission

    Get PDF
    The Climate Absolute Refractivity and Reflectance Observatory (CLARREO) Pathfinder (CPF) mission is being developed to demonstrate SI-traceable retrievals of reflectance at unprecedented accuracies for global satellite observations. An Independent Calibration of the CPF sensor using the Goddard Laser for Absolute Measurement of Radiance (GLAMR) is planned to allow validation of CPF accuracies. GLAMR is a detector-based calibration system relies on a set of NIST-calibrated transfer radiometers to assess the spectral radiance from the GLAMR sphere source to better than 0.3 % (k=2). The current work describes the calibration of the Solar, Lunar Absolute Reflectance Imaging Spectroradiometer (SOLARIS) that was originally developed as a calibration demonstration system for the CLARREO mission and is now being used to assess the independent calibration being developed for CPF. The methodology for the radiometric calibration of SOLARIS is presented as well as results from the GLAMR-based calibration of SOLARIS. The portability of SOLARIS makes it capable of collecting field measurements of earth scenes and direct solar and lunar irradiance similar to those expected during the on-orbit operation of the CPF sensor. Results of SOLARIS field measurements are presented. The use of SOLARIS in this effort also allows the testing protocols for GLAMR to be improved and the field measurements by SOLARIS build confidence in the error budget for GLAMR calibrations. Results are compared to accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval

    MODIS and VIIRS On-Orbit Calibration and Characterization Using Observations from Spacecraft Pitch Maneuvers

    Get PDF
    Two MODIS instruments (Terra and Aqua) and two VIIRS instruments (S-NPP and JPSS-1) are currently operated inspace, continuously making global earth observations in the spectral range from visible (VIS) to long-wave infrared(LWIR). These observations have enabled a broad range of environmental data records to be generated and distributed insupport of both operational and scientific community. Despite extensive pre-launch calibration and characterizationperformed for both MODIS and VIIRS instruments and routine on-orbit calibration activities carried out using their onboardcalibrators (OBC), various spacecraft maneuvers have also been designed and implemented to further enhance thesensor on-orbit calibration and data quality. This paper focuses on the use of observations made during spacecraft pitchmaneuvers of MODIS and VIIRS in support of their on-orbit characterization of thermal emissive bands (TEB) responseversus scan-angle (RVS). In the case of Terra MODIS, lunar observations made from instrument nadir view duringspacecraft pitch maneuvers are used to compare with that made regularly through instrument space view (SV) port toevaluate on-orbit changes in RVS and band-to-band registration (BBR) for the reflective solar bands (RSB). In additionto results derived from spacecraft pitch maneuvers performed for MODIS and VIIRS, discussion is provided on theadvantages, challenges, and lessons for future considerations and improvements

    NPP VIIRS Geometric Performance Status

    Get PDF
    Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite is scheduled for launch in October, 2011. It is to provide satellite measured radiance/reflectance data for both weather and climate applications. Along with radiometric calibration, geometric characterization and calibration of Sensor Data Records (SDRs) are crucial to the VIIRS Environmental Data Record (EDR) algorithms and products which are used in numerical weather prediction (NWP). The instrument geometric performance includes: 1) sensor (detector) spatial response, parameterized by the dynamic field of view (DFOV) in the scan direction and instantaneous FOV (IFOV) in the track direction, modulation transfer function (MTF) for the 17 moderate resolution bands (M-bands), and horizontal spatial resolution (HSR) for the five imagery bands (I-bands); 2) matrices of band-to-band co-registration (BBR) from the corresponding detectors in all band pairs; and 3) pointing knowledge and stability characteristics that includes scan plane tilt, scan rate and scan start position variations, and thermally induced variations in pointing with respect to orbital position. They have been calibrated and characterized through ground testing under ambient and thermal vacuum conditions, numerical modeling and analysis. This paper summarizes the results, which are in general compliance with specifications, along with anomaly investigations, and describes paths forward for characterizing on-orbit BBR and spatial response, and for improving instrument on-orbit performance in pointing and geolocation

    NPP VIIRS On-Orbit Calibration and Characterization Using the Moon

    Get PDF
    The Visible Infrared Imager Radiometer Suite (VIIRS) is one of five instruments on-board the Suomi National Polar orbiting Partnership (NPP) satellite that launched from Vandenberg Air Force Base, Calif., on Oct. 28, 2011. VIIRS has been scheduled to view the Moon approximately monthly with a spacecraft roll maneuver after its NADIR door open on November 21, 2011. To reduce the uncertainty of the radiometric calibration due to the view geometry, the lunar phase angles of the scheduled lunar observations were confined in the range from -56 deg to -55 deg in the first three scheduled lunar observations and then changed to the range from -51.5 deg to -50.5 deg, where the negative sign for the phase angles indicates that the VIIRS views a waxing moon. Unlike the MODIS lunar observations, most scheduled VIIRS lunar views occur on the day side of the Earth. For the safety of the instrument, the roll angles of the scheduled VIIRS lunar observations are required to be within [-14 deg, 0 deg] and the aforementioned change of the phase angle range was aimed to further minimize the roll angle required for each lunar observation while keeping the number of months in which the moon can be viewed by the VIIRS instrument each year unchanged. The lunar observations can be used to identify if there is crosstalk in VIIRS bands and to track on-orbit changes in VIIRS Reflective Solar Bands (RSB) detector gains. In this paper, we report our results using the lunar observations to examine the on-orbit crosstalk effects among NPP VIIRS bands, to track the VIIRS RSB gain changes in first few months on-orbit, and to compare the gain changes derived from lunar and SD/SDSM calibration

    Suomi NPP VIIRS Prelaunch and On-orbit Geometric Calibration and Characterization

    Get PDF
    The Visible Infrared Imager Radiometer Suite (VIIRS) sensor was launched 28 October 2011 on the Suomi National Polarorbiting Partnership (SNPP) satellite. VIIRS has 22 spectral bands covering the spectrum between 0.412 m and 12.01 m, including 16 moderate resolution bands (M-bands) with a spatial resolution of 750 m at nadir, 5 imaging resolution bands (I-bands) with a spatial resolution of 375 m at nadir, and 1 day-night band (DNB) with a near-constant 750 m spatial resolution throughout the scan. These bands are located in a visible and near infrared (VisNIR) focal plane assembly (FPA), a short- and mid-wave infrared (SWMWIR) FPA and a long-wave infrared (LWIR) FPA. All bands, except the DNB, are co-registered for proper environmental data records (EDRs) retrievals. Observations from VIIRS instrument provide long-term measurements of biogeophysical variables for climate research and polar satellite data stream for the operational communitys use in weather forecasting and disaster relief and other applications. Well Earth-located (geolocated) instrument data is important to retrieving accurate biogeophysical variables. This paper describes prelaunch pointing and alignment measurements, and the two sets of on-orbit correction of geolocation errors, the first of which corrected error from 1,300 m to within 75 m (20 I-band pixel size), and the second of which fine tuned scan angle dependent errors, bringing VIIRS geolocation products to high maturity in one and a half years of the SNPP VIIRS on-orbit operations. Prelaunch calibration and the on-orbit characterization of sensor spatial impulse responses and band-to-band co-registration (BBR) are also described

    Improving Nocturnal Fire Detection with the VIIRS Day-Night Band

    Get PDF
    As an important component in the Earth-atmosphere system, wildfires are a serious threat to life and property that—despite improving warning systems—have exacted greater costs in recent years. In addition, they impact global atmospheric chemistry by releasing potent trace gasses and aerosols. Using the Visible Infrared Imaging Radiometer Suite (VIIRS), this study investigates the adjustment of fire pixel selection criteria to include visible light signatures at night, creating the Firelight Detection Algorithm (FILDA). This allows for greatly improved detection of smaller and cooler fires from satellite observations. VIIRS scenes with coincident Advanced Spaceborne Thermal Emission and Reflection (ASTER) overpasses are examined after applying the operational VIIRS fire product algorithm and including a modified candidate fire pixel selection approach, which lowers the 4 μm brightness temperature threshold from 305 K but includes a minimum day-night band (DNB) radiance. FILDA is tested by applying it to scenes in different environments, including large forest fires like the Rim Fire in California and High Park fire in Colorado, in addition to gas flares. A large increase in the number of detected fire pixels is observed with small non-agricultural wildfires, as verified with the finer-resolution ASTER data (90 m). Quantitative use of the DNB to improve detection of these smaller fires could lead to reduced warning and response times as well as provide more accurate quantification of biomass burning emissions at night. Adviser: Jun Wan
    • …
    corecore