13 research outputs found

    VIALACTEA science gateway for Milky Way analysis

    Get PDF
    This paper presents the latest developments on the VIALACTEA Science Gateway in the context of the FP7 VIALACTEA project. The science gateway operates as a central workbench for the VIALACTEA community in order to allow astronomers to process the new-generation surveys (from Infrared to Radio) of the Galactic Plane to build and deliver a quantitative 3D model of our Milky Way Galaxy. The final model will be used as a template for external galaxies to study star formation across the cosmic time. The adopted agile software development process allowed to fulfill the community needs in terms of required workflows and underlying resource monitoring. Scientific requirements arose during the process highlighted the needs for easy parameter setting, fully embarrassingly parallel computations and large-scale input dataset processing. Therefore the science gateway based on the WS-PGRADE/gUSE framework has been able to fulfill the requirements mainly exploiting the parameter sweep paradigm and parallel job execution of the workflow management system. Moving from development to production environment an efficient resource monitoring system has been implemented to easily analyze and debug sources of potential failures occurred during workflow computations. The results of the resource monitoring system are exploitable not only for IT experts, administrators and workflow developers but also for the end-users of the gateway. The affiliation to the STARnet Gateway Federation ensures the sustainability of the presented products after the end of the project, allowing the usage of the VIALACTEA Science Gateway to all the stakeholders, not only to the community members. © 2017 Elsevier B.V

    Vialactea Visual Analytics tool for Star Formation studies of the Galactic Plane

    Get PDF
    We present a visual analytics tool, based on the VisIVO suite, to exploit a combination of all new-generation surveys of the Galactic Plane to study the star formation process of the Milky Way. The tool has been developed within the VIALACTEA project, founded by the 7th Framework Programme of the European Union, that creates a common forum for the major new-generation surveys of the Milky Way Galactic Plane from the near infrared to the radio, both in thermal continuum and molecular lines. Massive volumes of data are produced by space missions and ground-based facilities and the ability to collect and store them is increasing at a higher pace than the ability to analyze them. This gap leads to new challenges in the analysis pipeline to discover information contained in the data. Visual analytics focuses on handling these massive, heterogeneous, and dynamic volumes of information accessing the data previously processed by data mining algorithms and advanced analysis techniques with highly interactive visual interfaces offering scientists the opportunity for in-depth understanding of massive, noisy, and high-dimensional data

    VIALACTEA knowledge base homogenizing access to Milky Way data

    Get PDF
    The VIALACTEA project has a work package dedicated to "Tools and Infrastructure" and, inside it, a task for the "Database and Virtual Observatory Infrastructure". This task aims at providing an infrastructure to store all the resources needed by the, more purposely, scientific work packages of the project itself. This infrastructure includes a combination of: storage facilities, relational databases and web services on top of them, and has taken, as a whole, the name of VIALACTEA Knowledge Base (VLKB). This contribution illustrates the current status of this VLKB. It details the set of data resources put together; describes the database that allows data discovery through VO inspired metadata maintenance; illustrates the discovery, cutout and access services built on top of the former two for the users to exploit the data content

    Toward porting Astrophysics Visual Analytics Services to the European Open Science Cloud

    Get PDF
    The European Open Science Cloud (EOSC) aims to create a federated environment for hosting and processing research data to support science in all disciplines without geographical boundaries, such that data, software, methods and publications can be shared as part of an Open Science community of practice. This work presents the ongoing activities related to the implementation of visual analytics services, integrated into EOSC, towards addressing the diverse astrophysics user communities needs. These services rely on visualisation to manage the data life cycle process under FAIR principles, integrating data processing for imaging and multidimensional map creation and mosaicing, and applying machine learning techniques for detection of structures in large scale multidimensional maps

    C3C^{3} : A Command-line Catalogue Cross-matching tool for modern astrophysical survey data

    Get PDF
    In the current data-driven science era, it is needed that data analysis techniques has to quickly evolve to face with data whose dimensions has increased up to the Petabyte scale. In particular, being modern astrophysics based on multi-wavelength data organized into large catalogues, it is crucial that the astronomical catalog cross-matching methods, strongly dependant from the catalogues size, must ensure efficiency, reliability and scalability. Furthermore, multi-band data are archived and reduced in different ways, so that the resulting catalogues may differ each other in formats, resolution, data structure, etc, thus requiring the highest generality of cross-matching features. We present C3C^{3} (Command-line Catalogue Cross-match), a multi-platform application designed to efficiently cross-match massive catalogues from modern surveys. Conceived as a stand-alone command-line process or a module within generic data reduction/analysis pipeline, it provides the maximum flexibility, in terms of portability, configuration, coordinates and cross-matching types, ensuring high performance capabilities by using a multi-core parallel processing paradigm and a sky partitioning algorithm.Comment: 6 pages, 4 figures, proceedings of the IAU-325 symposium on Astroinformatics, Cambridge University pres

    Astrophysics visual analytics services on the European Open Science Cloud

    Get PDF
    The European Open Science Cloud (EOSC) aims to create a federated environment for hosting and processing research data, supporting science in all disciplines without geographical boundaries, so that data, software, methods and publications can be shared seamlessly as part of an Open Science community. This work presents the ongoing activities related to the implementation and integration into EOSC of Visual Analytics services for astrophysics, specifically addressing challenges related to data management, mapping and structure detection. These services provide visualisation capabilities to manage the data life cycle processes under FAIR principles, integrating data processing for imaging and multidimensional map creation and mosaicking and data analysis supported with machine learning techniques, for detection of structures in large scale multidimensional maps

    A Panoramic View of Star Formation in Milky Way: Recent Results from Galactic Plane FIR/Sub-mm Surveys

    Get PDF
    The star formation process involves a continuous gas flow from galactic (kpc) down to stellar (AU) scales. While targeted observations of single star forming sources are needed to understand the steps of this process with increasing detail, large unbiased Galactic plane surveys permit to reconstruct the map of star forming sites across the Milky Way, considered as an unique star formation engine. On the one hand, such surveys provide the community with a huge number of candidate targets for future follow-up observations with state-of-the-art telescope facilities, on the other hand they can provide reliable estimates of global parameters, such as Galactic star formation efficiency and rate, through which it is possible to establish comparisons with other galaxies. In this talk I will review the main results of recent FIR/sub-mm continuum emission Galactic surveys, with special attention to the Hi-GAL Herschel project, having the advantage (but also the complication) of being a multi-wavelength survey covering the spectral range in which the cold interstellar dust is expected to emit. The subsequent VIALACTEA project represents an articulate effort to combine Hi-GAL with other continuum and line surveys to refine the census of star forming clumps in the Galactic plane, and to use it to describe the Milky Way as a whole. Interpretation limitations imposed by the loss of detail with increasing distance are also discussed
    corecore