2 research outputs found

    VI-based appliance classification using aggregated power consumption data

    Get PDF
    Non-intrusive load monitoring detects active appliances in a household (and their power consumption) from measuring the aggregated power at just one point in that household. Our previous works focused on classifying a single appliance, assuming that the voltage and current trace could be isolated from an aggregated signal by considering the difference in current before and after the event. In this paper, we show that this assumption holds and that it is a viable approach in practice. We experimentally validate this for two classification methods we proposed earlier: (1) random forests using elliptical Fourier descriptors of the appliances' VI trajectories and (2) convolutional neural networks using the appliances' VI images. We benchmark these approaches on the aggregated data from the 2018 version of PLAID. We obtain, respectively for each of these classifiers, a maximal F-macro-measure of 85.31% and 87.95 %. We also show that using submetered data for training does not improve the performance
    corecore