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Abstract—Non-intrusive load monitoring detects active ap-
pliances in a household (and their power consumption) from
measuring the aggregated power at just one point in that
household. Our previous works focused on classifying a single
appliance, assuming that the voltage and current trace could be
isolated from an aggregated signal by considering the difference
in current before and after the event. In this paper, we show that
this assumption holds and that it is a viable approach in practice.
We experimentally validate this for two classification methods we
proposed earlier: (1) random forests using elliptical Fourier de-
scriptors of the appliances’ VI trajectories and (2) convolutional
neural networks using the appliances’ VI images. We benchmark
these approaches on the aggregated data from the 2018 version
of PLAID. We obtain, respectively for each of these classifiers, a
maximal Fmacro-measure of 85.31% and 87.95 %. We also show
that using submetered data for training does not improve the
performance.

Index Terms—Non-intrusive load monitoring, appliance clas-
sification

I. INTRODUCTION

A basic but crucial step towards increased energy efficiency
and savings in residential settings, is to have an accurate
view of energy consumption. To monitor residential energy
consumption cost-effectively, i.e., without relying on per-
device monitoring equipment, non-intrusive load monitoring
(NILM) provides an elegant solution. It identifies the
per-appliance energy consumption by first measuring the
aggregated energy trace at a single, centralized point in the
home and then disaggregating this power consumption for
individual devices using machine learning techniques. Quite
often, two required steps are event detection and appliance
classification.

Classifying active appliances for NILM is mostly done by
extracting features from the monitored data and training a
machine learning classifier. These features are often extracted
once it is detected that a device is switched on/off [1]. The
type of extracted features heavily depends on the sampling
rate of the measurements. When using low frequency data
(6 1 Hz), the most common features are the power levels and
the on/off durations [2]. A drawback of this approach is that
only energy-intensive appliances can be detected. This can
be alleviated by performing higher frequency measurements
at the cost of an increased data storage rate and more

complex data analytics, i.e., the voltage and current signals
sampled at a frequency higher than 1 Hz are measured.
From these signals, features like the harmonics [3] and other
frequency components [4] from the steady-state and transient
behavior can be calculated. More recently, the possibility
to consider voltage-current (VI) trajectories has also been
considered [5]–[7]. Once the features are extracted, they
can be fed into different classification methods, like support
vector machines (SVM) [8], decision trees [9], or nearest
neighbors [10]. In order to distinguish appliances based on
their VI trajectories, the voltage and current signals need to
be sampled at a relatively high frequency.

In our previous work, the problem of classifying appliances
based on their VI trajectories is addressed as an image
recognition problem. A first work is based on detecting
contours [11]. It represents the trajectory as a pixelated
image and describes a classical method for image recognition
that: (1) finds the contours, (2) calculates the elliptic
Fourier descriptors of the contours, and (3) trains machine
learning methods using these elliptical Fourier descriptors. A
second work performs image recognition using convolutional
neural networks (CNNs) [12]. CNNs are often used for
classification tasks in computer vision, due to their excellent
discriminative power in classifying images [13]. It is shown
that a CNN approach can also be valuable in a NILM context
to discriminate active appliances based on the weighted
pixelated VI image.

Ideally, to test the methods proposed in our previous
papers, a dataset having high frequency aggregated and high
frequency sub-metered v and i signals should have been used.
However, when these methods were developed, no existing
public dataset included both. For this reason, both the 2014
version of PLAID [14] and WHITED [15] were considered
as datasets to benchmark the methods as they both contain
high frequency sub-metered data. This research on appliance
classification was a first step towards a more realistic NILM
setting starting from the aggregated power measurements.
It was a very meaningful step, as typically appliances are
turned on/off one at a time, and the single appliance current
(and thus VI trajectory) can be extracted from the aggregated
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Fig. 1: The aggregated current and voltage when an appliance is (a) activated and (c) deactivated, together with the current
and voltage of the appliance causing the event (b) and (d).

measurements by considering the difference in current before
and after the event. In this paper, we experimentally validate
this idea by applying the methods on the high frequency
aggregated data of PLAID, which will be published soon.
(Note, that also the concurrent work [16] confirmed that single
appliance current extracted from aggregated measurements
can be successfully used for NILM).

Section II explains first how the current and voltage signal
of a single appliance can be extracted from the aggregated
data, second it restates how the current and voltage signal
are transformed into a pixelated or weighted pixelated image,
and at last, it briefly discusses the image recognition methods.
For a complete discussion, we refer the reader to the original
papers [11], [12]. The evaluation setup is described in Sec-
tion III. The results of the two earlier published methods on
aggregated data are presented in Section IV. Furthermore, we
investigate if a better performance is obtained when training
uses submetered data instead of aggregated data. Section V
concludes this paper.

II. METHODOLOGY

This section briefly discusses the methods presented in [11]
and [12]. Both methods for appliance classification cast the
problem as an image recognition problem. Thus, the VI tra-
jectory of an appliance needs to be transformed into a pixelated
or weighted pixelated image, which are respectively taken as
input of both methods. First, we describe how the current
and voltage signal of a single appliance can be extracted
from the aggregated current and voltage signals. Then, the
preprocessing to obtain images from the current and voltage
signal is discussed. After that, the respective methods are
explained.

A. Obtaining submetered current and voltage signal
In order to obtain the pixelated or weighted pixelated VI

images of individual appliances from aggregated data, the

current and voltage before and after all events are selected.
These events can be present in the dataset as labels, or one
can detect them using a robust event detection method [17].
The current and voltage before the event (ibefore and vbefore)
are respectively one current and voltage cycle happening one
second before the event. These two cycles are aligned at a
zero crossing of the voltage. The extraction of the current and
voltage after the event (iafter and vafter) is performed in the
same way for the cycles occurring one second after the event.
If the event is caused by the activation of an appliance (the
maximum of iafter being higher than the maximum of ibefore)
and if only one appliance is activated, then the current i and
voltage v of the activated appliance is obtained by:

i = iafter − ibefore (1)
v = vafter (2)

If the event is caused by the deactivation of an appliance (the
maximum of ibefore being higher than the maximum of iafter)
and if only one appliance is deactivated, then the current i and
voltage v of the deactivated appliance is obtained by:

i = ibefore − iafter (3)
v = vbefore (4)

Figure 1 gives an example. From the obtained per-
appliance/submetered i and v signals, the pixelated or
weighted pixelated VI image is created.

B. Obtaining VI image from current and voltage

The VI trajectory of an appliance is obtained by first plotting
the voltage against the current for a defined time period when
the appliance is turned on and in steady state. The VI trajectory
is then converted into a VI image (n× n matrix) by meshing
the VI trajectory. If a pixelated VI image is created, each cell
of the mesh is assigned a binary value that denotes whether or
not it is traversed by the trajectory. If a weighted pixelated VI
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Fig. 2: (a) The voltage and (b) current of a CFL and the
transformation from (c) the continuous VI trajectory into (d)
the pixelated and (c) weighted pixelated VI image for n = 15.

image is created, each cell of the mesh is assigned a value that
denotes the number of times it is traversed by the trajectory.
This is shown in Figure 2.

C. Elliptical Fourier Descriptors

In [11], the image classification problem is rephrased as
an object recognition problem. The contours of an object are
identified from the image, characterized by elliptic Fourier
descriptors and then classified with a label. In this context,
object recognition is used to recognize the contours of a VI
trajectory in the pixelated image, and to describe them using
elliptical Fourier descriptors. A random forest classifier uses
these descriptors to classify the objects.

The contour of an object in an image is a closed curve that
forms the boundary of that object. Figure 3 shows the detected
contours of the VI trajectory of a compact fluorescent lamp.
This example has three contours. To avoid that the trajectory
touches the border, extra pixel rows and columns are added to
the sides. (Otherwise this would result in two separate outside
contours instead of one.) Only one contour can be used to
classify the appliances because not all appliances have the
same amount of contours, while this is required for the use of
machine learning methods. For that reason, the outer counter
is chosen, since it is a closed curve that resembles the shape
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Fig. 3: The identification of the VI trajectory contours of a
CFL. Only the outer contour is used for object classification.

of a smoothed VI trajectory. In contrast to the original VI
trajectory, all points on the contour are separated uniformly,
such that the Euclidean distance between neighbouring points
on the contour is the same.

Once the contour is identified, elliptical Fourier descriptors
(EFD) are used to characterize the corresponding appliance.
EFDs define the contour as the sum of a certain number of
ellipses (e) required to mimic the shape, and each ellipse is
defined by four parameters (two each for the x- and y-axis).
The first ellipse describes the overall shape, location, size,
and rotational orientation of the contour. Additionally, more
ellipses can be included to capture more detailed information
about the contour’s complexity. Figure 4 shows the reconstruc-
tion of the contour when using up to e = 4 harmonics. The
approximated contour better resembles the original contour
when more harmonics are included. The reader is referred to
[18], [19] for mathematical details.

The object recognition results in a vector of size 4 · e. This
vector can be used as input for classification algorithms. As
our previous work [11] shows that the random forest obtains
the best performance, this is the only classifier that will be
used to classify the descriptors. A random forest (RF) is an
ensemble technique that classifies the data using a collection
of decision trees. Each decision tree is trained on a subset of
the dataset that has the same size as the original training set,
but samples are drawn with replacement. At each node of the
decision tree, a feature is selected and the tree is traversed
downward (either following left/right branch) by comparing
its value to a threshold. Given a new sample, the output of
each decision tree is averaged to obtain the final prediction.

D. Convolutional Neural Networks

Instead of converting the VI trajectory into a pixelated
image, it can also be converted into a weighted pixelated
image. A CNN can then be applied in order to classify
the images. CNNs are a type of neural network (NN) that
are often used in computer vision. To create a CNN from
a NN, convolutional layers are added. The main difference
between a convolutional and fully connected layer is that
each node in a convolutional layer is connected to a small
region of the input matrix exploiting local correlation, making
them highly suitable for classifying images [13]. After a
convolutional layer, it is common to implement a pooling
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Fig. 4: The original (orange) contour of the VI trajectory of a CFL together with the approximated (blue) contour of the VI
trajectory with increasing number of coefficients.

Fig. 5: The architecture of the implemented CNN taking as input the VI image.

layer to downsample the convolved matrix. This reduces the
spatial size of the representation and the amount of parameters,
and hence also manages overfitting. This downsampling is
achieved by sliding a d×d window over the input (here, with
d = 2) and each time outputting the largest element of the
window.

The CNN implemented in this chapter has the following
structure, see Figure 5: it takes as input the weighted pixelated
VI image (a n×n matrix), and has the following hidden layers:
a convolutional layer with f filters of size 5, a pooling layer,
another convolutional layer with f filters of size 5, another
pooling layer, a fully connected layer with n2 nodes and an
output layer with k nodes. The number of filters f is set to 50.
The number of output nodes k is determined by the number
of different appliances present in the dataset (i.e., the number
of classes). An analysis of alternative parameter settings for f
showcased no significant changes in the results. Since the class
labels are categorical, the cost function of the implemented
CNN is defined as the cross-entropy function [20].

III. EVALUATION SETUP

This section first describes the data on which the proposed
methods is benchmarked. After that the used evaluation metric
and the research questions are stated.

A. Data

The high frequency aggregated data in the Plug-Load Ap-
pliance Identification Dataset (PLAID) is measured at 30 kHz
at one location and contains 1478 measurements (activations
or deactivations) for 12 different appliances. Additionally, the
12 different appliances are submetered, each 10 times leading
to 130 events (the soldering iron leads to two start-up events).
In this dataset, the activations and deactivations (events) are

labelled making it easy to calculate the current and voltage
signal of the appliance causing the event. This data is publicly
available.1 For this paper, the aggregated data is obtained from
the files with id ranging from 1 to 324 (included), and the
submetered data from the files with id ranging from 1794 to
1925 (included).

It is important to note that although the results presented
in [11] and [12] are also obtained using data from PLAID, they
cannot be compared with the results obtained in this paper, as
a different part of the dataset is used. Here, only the appliances
having both submetered and aggregated are used. Whereas for
the previous works, the appliances only had submetered data.
Thus none of the appliances tested in the previous work, are
tested here, making comparison useless.

B. Evaluation metrics

As proposed in [21], the F -measure is used to evaluate
the classification performance, which is calculated for each
appliance type separately:

Fi = 2 · precisioni · recalli
precisioni + recalli

, ∀i ∈ [1, . . . , a] (5)

precisioni =
TPi

TPi + FPi
(6)

recalli =
TPi

TPi + FNi
(7)

where TPi, TNi, FPi, and FNi are respectively the true
positives, true negatives, false positives, and false negatives
for appliance type i. The number of different appliance types
is a. The F -measure for a perfect classifier is 1, whereas a
random classifier yields an F -measure of 0.5. This measure
provides information about the confusion between instances.

1www.plaidplug.com



Its magnitude is mainly determined by the number of correctly
labeled samples, but tells us nothing about the instances that
are correctly labeled with a 0 (the true negatives). In other
words, the precision and recall only focus on the positive class
[22]. In the end, the average over all the appliance types’ F -
measure is taken, leading to the so-called macro-average.

Fmacro =
1

a

a∑
i=1

Fi (8)

where a is the total number of different appliance types.
Furthermore, the confusion matrix is plotted showing the
correct predictions (the diagonal) and the types of incorrect
predictions (the rows represent the predicted class and the
columns the real class). This matrix gives a clear view on
which appliances are confused with each other. The F -measure
can be calculated from the confusion matrix.

C. Research Objectives

Objective 1: For each method, does the classification
of the appliance types works with these extracted features?
We investigate this by calculating the F -measure for the two
described classification methods. Additionally, is submetered
data necessary for training the algorithms or is aggregated data
sufficient? We investigate this by comparing the performance
of the algorithms when trained respectively using submetered
or aggregated data. To obtain the performance of the first case,
the classification algorithms are trained using the submetered
data and tested using the aggregated data. To obtain the
performance of the second case, the classification algorithms
are trained and tested using respectively 3/4th and 1/4th of
the data. This is repeated 4 times and each fold is created
by sampling without replacement (also known as 4-fold cross
validation). As a result, each sample of the aggregated data
belongs once to the test data. If we store the prediction of each
test sample, we are capable to calculate the Fmacro-measure
which can be compared to the Fmacro-measure calculated in
the previous case.

Objective 2: For each method, which parameters lead
to the best performance? We investigate this by altering the
parameters image size and number of EFDs, and by comparing
the obtained Fmacro-measures.

Objective 3: Which method, the method using the EFDs
or the CNN performs the best? We investagte this by compar-
ing the obtained Fmacro-measures.

IV. RESULTS

This section reports the results obtained by the method
using the EFDs and by the CNN and discusses each research
qeustion posed in the previous section.

A. Objective 1

Figure 6 shows the Fmacro for the random forest that uses
the EFDs as input and that is trained on submetered and
aggregated data for different image sizes. Figure 7 shows
Fmacro for the CNN when using aggregated or submetered data
for training, and when using varying images sizes.
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Fig. 6: The Fmacro of the random forest classifier using an
increasing number of EFDs e for different image sizes and
when trained on submetered data (left) or aggregated data
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Fig. 7: The Fmacro for the aggregated data of the 2018 version
of PLAID when CNN for f = 50 and varying image size n
is used. The training is done using submetered or aggregated
data.

For both methods, we can state that appliance classification
using the extracted submetered voltage and current signals
from the aggregated signals works. Additionally for both
methods, the results show that training directly on the ex-
tracted traces from the aggregated measurements works better
than training on the submetered data. This can be explained
intuitively by the fact that when training uses aggregated data,
the training data contains the same noise (caused by other
active appliances) as present in the test data. This is important
for practical reasons, as in a household, it is not achievable to
submeter all different appliances.

B. Objective 2

In Figure 6, we can see that using three or more EFDs
does not significantly impact the accuracy for random forest
in terms of the Fmacro-measure. The pixelated image size is
altered between [16 × 16, 20 × 20, 30 × 30, 40 × 40, 50 ×
50, 60 × 60]. As shown, increasing the image size does not
lead to an improvement in the Fmacro when using EFDs as
input for random forest. When trained on submetered data, the
EFDs calculated from the contours from the smallest image
(16 × 16) lead to the best Fmacro, and those from the largest
(60 × 60) to the worst. An intuitive explanation would be
that the lower resolution of the images masks the difference
between the submetered and aggregated data. When trained on
aggregated data, the EFDs calculated from the contours from
the image with size 30×30) lead to the best Fmacro, and those



from the smallest image (16× 16) to the worst. We conclude
that once a certain resolution is obtained, adding information
by increasing the resolution is not useful and leads to a lower
performance. The best Fmacro(= 85.31%) is obtained when the
random forest is trained on aggregated data and the 3 EFDs
are calculated from images of the size 30× 30.

In Figure 7, we see that using image sizes larger than 30×30
does not considerably improve the Fmacro-measure, just like
was the case when using EFDs as input. The best Fmacro(=
88.0%) is obtained when the CNN is trained on aggregated
data and images of the size 30× 30 are used.

Additionally, we also plotted the F -measure per appliance
and the confusion matrix for each method when trained using
submetered and aggregated data. Figure 8 shows the F -
measure per appliance and the confusion matrix for the random
forest using as input 3 EFDs extracted from images with
size 30 × 30, and when using submetered and aggregated
data for training. When using submetered data for training
(Figure 8 (a)), the water kettle and coffeemaker are confused
with each other (both resistive heaters). Additionally, some
other confusion exists: the CFL is confused with the laptop
charger (both non-linear loads) and the AC with the soldering
iron. When training uses aggregated data (Figure 8 (b)), a lot
of confusion is resolved. Now only the water kettle and the
coffeemaker are confused with each other, and the CFL with
the laptop charger.

Figure 9 shows the F -measure per appliance and the con-
fusion matrix when using submetered and aggregated data for
training, and when the image size of 30 × 30 is used. When
using aggregated data for training (Figure 9b), only the the
water kettle and the coffeemaker are confused with each other
(both resistive heaters) in respectively 45.3% and 31.9% of the
samples. When using submetered data (Figure 9a)), 46.6% of
the coffeemaker samples are confused with the water kettle and
13.3% the other way around. Additionally, also the ILB and
AC are confused sometimes with the coffeemaker (respectively
15.7% and 9.7%). Further research is necessary to explain why
there is an asymmetry in the confusion and why the confusion
is reduced when using aggregated data for training compared
to using submetered data.

C. Objective 3

When using submetered data for training, the Fmacro of the
CNN (80.4%) is significantly higher than the one obtained
by the method based on EFDs (72.5%). This difference is
caused by the fact that the CNN is better in classifying the
AC and there is less confusion between the water kettle and
the coffee maker. When using aggregated data for training,
the Fmacro of the CNN (88.0%) is slightly higher than the
one obtained by the method based on EFDs (85.3%). Both
the CNN and the method based on EFDs, confuse the water
kettle and coffee maker with each other, but the CNN is better
in classifying the CFL. This difference in performance is also
visible in the previously published work when training and
testing was performed on submetered data: the Fmacro is 66.2%
when using 3 EFDs as input for a random forest [11], and

77.6% when using CNN [12]. Again, the CNN outperforms
the method using the EFDs. Note that these last two results can
not be compared in terms of absolute performance measures
with the results mentioned in this paper, as submetered data
is used for training and testing.

V. CONCLUSION

In this paper, we validate that the single appliance current
and voltage can be extracted from the aggregated measure-
ments by considering the difference in current before and
after the event, assuming that only one appliance is turned
on/off one at a time. We tested appliance classification on such
submetered signals extracted from aggregated measurements
and evaluated two classification methods: (1) the random
forest using elliptical Fourier descriptors of the appliances’
VI trajectory [11] and (2) the CNN using the appliances’ VI
images [12], on the aggregated data in PLAID. An Fmacro-
measure of 85.3% and 88.0% are obtained respectively by
the two methods, validating that appliance classification using
the extracted single appliance current and voltage works
reasonably well.

An Fmacro-measure of 72.5% and 80.4% is obtained respec-
tively by the two methods when submetered data is used for
training instead of aggregated data. Using aggregated data for
training leads thus to a better performance, indicating that the
gathering of submetered data is unnecessary.

In addition for both methods, it was also found that in-
creasing the image size above 30× 30 does not lead to better
performance. A similar conclusion is found when the number
of EDFs exceeds three.

When comparing the two methods, it is found that the CNN
performs better than the method using the EFDs.
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Fig. 9: The F -measure per appliance and confusion matrix for the aggregated data in the 2018 version of PLAID when the
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light bulb
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