5 research outputs found

    Image-Based Mapping and Localization using VG-RAM Weightless Neural Networks

    Get PDF
    Localização e Mapeamento são problemas fundamentais da robótica autônoma. Robôs autônomos necessitam saber onde se encontram em sua área de operação para navegar pelo ambiente e realizar suas atividades de interesse. Neste trabalho, apresentamos um sistema para mapeamento e localização baseado em imagens que emprega Redes Neurais Sem Peso do Tipo VG-RAM (RNSP VG-RAM) para um carro autônomo. No nosso sistema, uma RNSP VG-RAM aprende posições globais associadas à imagens e marcos tridimensionais capturados ao longo de uma trajetória, e constrói um mapa baseado nessas informações. Durante a localização, o sistema usa um Filtro Estendido de Kalman para integrar dados de sensores e do mapa ao longo do tempo, através de passos consecutivos de predição e correção do estado do sistema. O passo de predição é calculado por meio do modelo de movimento do nosso robô, que utiliza informações de velocidade e ângulo do volante, calculados a partir de imagens utilizando-se odometria visual. O passo de correção é realizado através da integração das posições globais que a RNSP VG-RAM com a correspondência dos marcos tridimensional previamente armazenados no mapa do robô. Realizamos experimentos com o nosso sistema usando conjuntos de dados do mundo real. Estes conjuntos de dados consistem em dados provenientes de vários sensores de um carro autônomo, que foram sistematicamente adquiridos durante voltas ao redor do campus principal da UFES (um circuito de 3,57 km). Nossos resultados experimentais mostram que nosso sistema é capaz de aprender grandes mapas (vários quilômetros de comprimento) e realizar a localização global e rastreamento de posição de carros autônomos, com uma precisão de 0,2 metros quando comparado à abordagem de Localização de Monte Carlo utilizado no nosso veículo autônomo

    Hierarchische Modelle für das visuelle Erkennen und Lernen von Objekten, Szenen und Aktivitäten

    Get PDF
    In many computer vision applications, objects have to be learned and recognized in images or image sequences. Most of these objects have a hierarchical structure.For example, 3d objects can be decomposed into object parts, and object parts, in turn, into geometric primitives. Furthermore, scenes are composed of objects. And also activities or behaviors can be divided hierarchically into actions, these into individual movements, etc. Hierarchical models are therefore ideally suited for the representation of a wide range of objects used in applications such as object recognition, human pose estimation, or activity recognition. In this work new probabilistic hierarchical models are presented that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects, object parts or actions and movements in order to share calculations and avoid redundant information. We will introduce online and offline learning methods, which enable to create efficient hierarchies based on small or large training datasets, in which poses or articulated structures are given by instances. Furthermore, we present inference approaches for fast and robust detection. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. They will be used in an unified hierarchical framework spatially for object recognition as well as spatiotemporally for activity recognition. The unified generic hierarchical framework allows us to apply the proposed models in different projects. Besides classical object recognition it is used for detection of human poses in a project for gait analysis. The activity detection is used in a project for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model the environment of the vehicle for an efficient and robust interpretation of the scene in real-time.In zahlreichen Computer Vision Anwendungen müssen Objekte in einzelnen Bildern oder Bildsequenzen erlernt und erkannt werden. Viele dieser Objekte sind hierarchisch aufgebaut.So lassen sich 3d Objekte in Objektteile zerlegen und Objektteile wiederum in geometrische Grundkörper. Und auch Aktivitäten oder Verhaltensmuster lassen sich hierarchisch in einzelne Aktionen aufteilen, diese wiederum in einzelne Bewegungen usw. Für die Repräsentation sind hierarchische Modelle dementsprechend gut geeignet. In dieser Arbeit werden neue probabilistische hierarchische Modelle vorgestellt, die es ermöglichen auch mehrere Objekte verschiedener Kategorien, Skalierungen, Rotationen und aus verschiedenen Blickrichtungen effizient zu repräsentieren. Eine Idee ist hierbei, Ähnlichkeiten unter Objekten, Objektteilen oder auch Aktionen und Bewegungen zu nutzen, um redundante Informationen und Mehrfachberechnungen zu vermeiden. In der Arbeit werden online und offline Lernverfahren vorgestellt, die es ermöglichen, effiziente Hierarchien auf Basis von kleinen oder großen Trainingsdatensätzen zu erstellen, in denen Posen und bewegliche Strukturen durch Beispiele gegeben sind. Des Weiteren werden Inferenzansätze zur schnellen und robusten Detektion vorgestellt. Diese werden innerhalb eines einheitlichen hierarchischen Frameworks sowohl räumlich zur Objekterkennung als auch raumzeitlich zur Aktivitätenerkennung verwendet. Das einheitliche Framework ermöglicht die Anwendung des vorgestellten Modells innerhalb verschiedener Projekte. Neben der klassischen Objekterkennung wird es zur Erkennung von menschlichen Posen in einem Projekt zur Ganganalyse verwendet. Die Aktivitätenerkennung wird in einem Projekt zur Gestaltung altersgerechter Lebenswelten genutzt, um in intelligenten Wohnräumen Aktivitäten und Verhaltensmuster von Bewohnern zu erkennen. Im Rahmen eines Projektes zur Parklückenvermessung mithilfe eines intelligenten Fahrzeuges werden die vorgestellten Ansätze verwendet, um das Umfeld des Fahrzeuges hierarchisch zu modellieren und dadurch das Szenenverstehen zu ermöglichen

    A system that learns to recognize 3-D objects

    Get PDF
    A system that learns to recognize 3-D objects from single and multiple views is presented. It consists of three parts: a simulator of 3-D figures, a Learner, and a recognizer. The 3-D figure simulator generates and plots line drawings of certain 3-D objects. A series of transformations leads to a number of 2-D images of a 3-D object, which are considered as different views and are the basic input to the next two parts. The learner works in three stages using the method of Learning from examples. In the first stage an elementary-concept learner learns the basic entities that make up a line drawing. In the second stage a multiple-view learner learns the definitions of 3-D objects that are to be recognized from multiple views. In the third stage a single-view learner learns how to recognize the same objects from single views. The recognizer is presented with line drawings representing 3-D scenes. A single-view recognizer segments the input into faces of possible 3-D objects, and attempts to match the segmented scene with a set of single-view definitions of 3-D objects. The result of the recognition may include several alternative answers, corresponding to different 3-D objects. A unique answer can be obtained by making assumptions about hidden elements (e. g. faces) of an object and using a multiple-view recognizer. Both single-view and multiple-view recognition are based on the structural relations of the elements that make up a 3-D object. Some analytical elements (e. g. angles) of the objects are also calculated, in order to determine point containment and conveziti. The system performs well on polyhedra with triangular and quadrilateral faces. A discussion of the system's performance and suggestions for further development is given at the end. The simulator and the part of the recognizer that makes the analytical calculations are written in C. The learner and the rest of the recognizer are written in PROLOG
    corecore