153 research outputs found

    A Software Defined Radio Platform with Direct Conversion: SOPRANO

    Get PDF
    A new software defined radio platform with multiport-based direct conversion is proposed, named SOPRANO (Software Programmable and Hardware Reconfigurable Architecture for Network). The main features of SOPRANO are a high-level design methodology for digital circuits, a new mixer-less direct conversion method, and software algorithms for multi-band and multi-mode operation. We built the first prototype SOPRANO 1.0, which was able to receive PSK and QAM signals with two different carrier frequencies at 2.45 GHz and 5.25 GHz by changing signal processing software

    Low-Cost Transceiver Architectures for 60 GHz Ultra Wideband WLANs

    Get PDF
    Millimeter-wave multiport transceiver architectures dedicated to 60 GHz UWB short-range communications are proposed in this paper. Multi-port circuits based on 90° hybrid couplers are intensively used for phased antenna array, millimeter-wave modulation and down-conversion, as a low-cost alternative to the conventional architecture. This allows complete integration of circuits including antennas, in planar technology, on the same substrate, improving the overall transceiver performances

    Millimeter-Wave Ultra-Wideband Six-Port Receiver Using Cross-Polarized Antennas

    Get PDF
    This paper presents a new low-cost millimeter-wave ultra-wideband (UWB) transceiver architecture operating over V-band from 60 to 64 GHz. Since the local oscillator (LO) power required in the operation of six-port receiver is generally low (compared to conventional one using diode mixers), the carrier recovery or LO synchronization is avoided by using second transmission path and cross-polarized antennas. The six-port model used in system simulation is based on S-parameters measurements of a rectangular waveguide hybrid coupler. The receiver architecture is validated by comparisons between transmitter and receiver bit sequences and bit error rate results of 500 Mb/s pseudorandom QPSK signal

    Multifunction Transceiver Architecture and Technology for Future Wireless Systems

    Get PDF
    RÉSUMÉ Depuis la toute première transmission sans fil, les ondes radiofréquences ont été progressivement mises en valeur et exploitées dans un nombre de plus en plus important d'applications. Parmi toutes ces applications, la détection et la télécommunication sont sans doute les plus indispensables de nos jours. Il existe un grand nombre d’utilisations des radiofréquences, incluant les transports intelligents pour lesquels les véhicules doivent être équipés à la fois de radars et de dispositifs de communication afin d’être capables de détecter l'environnement ainsi que de réaliser la communication avec d'autres unités embarquées. La technologie émergente 5G est un autre exemple pour lequel plusieurs capteurs et radios devraient être capables de coopérer de manière autonome ou semi-autonome. Les principes de fonctionnement des systèmes radars et radio sont toutefois différents. Ces différences fondamentales peuvent entraîner l'utilisation de différentes architectures de traitement du signal et d'émetteur-récepteur, ce qui peut poser des problèmes pour l'intégration de toutes les fonctions requises au sein d'une seule et même plate-forme. En dehors de cela, certaines applications requièrent plusieurs fonctions simultanément dans un même dispositif. Par exemple, les systèmes de détection d'angle d'arrivée 2D nécessitent d'estimer l'angle d'arrivée (AOA) du faisceau entrant dans les plans horizontal et vertical simultanément. La communication radio multi-bandes et multi-modes est un autre exemple pour lequel un système radio doit être capable de communiquer dans plusieurs bandes de fréquences et dans plusieurs modes, par exemple, un duplexage en fonction de la fréquence ou du temps. À première vue, on peut penser que l'assemblage de plusieurs dispositifs distincts n'est pas la meilleure solution en ce qui concerne le coût, la simplicité et la fonctionnalité. Par conséquent, une direction de recherche consiste à proposer une architecture d'émetteur-récepteur unifiée et compacte plutôt qu’une plate-forme assemblant de multiples dispositifs distincts. C’est cette problématique qui est spécifiquement abordée dans ce travail. Selon les fonctions à intégrer dans un seul et unique système multifonctionnel, la solution peut traiter plusieurs aspects simultanément. Par exemple, toute solution réalisant l'intégration de fonctions liées au radar et à la radio devrait traiter deux aspects principaux, à savoir : la forme d'onde opérationnelle et l'architecture frontale RF.----------ABSTRACT Since the very early wireless transmission of radiofrequency signals, it has been gradually flourished and exploited in a wider and wider range of applications. Among all those applications of radio technology, sensing and communicating are undoubtedly the most indispensable ones. There are a large number of practical scenarios such as intelligent transportations in which vehicles must be equipped with both radar and communication devices to be capable of both sensing the environment and communication with other onboard units. The emerging 5G technology can be another important example in which multiple sensors and radios should be capable of cooperating with each other in an autonomous or semi-autonomous manner. The operation principles of these radar and radio devices are different. Such fundamental differences can result in using different operational signal, distinct signal processing, and transceiver architectures in these systems that can raise challenges for integration of all required functions within a single platform. Other than that, there exist some applications where several functions of a single device (i.e. sensor or radio) are required to be executed simultaneously. For example, 2D angle-of-arrival detection systems require estimating the angle of arrival (AOA) of the incoming beam in both horizontal and vertical planes at the same time. Multiband and multimode radio communication is another example of this kind where a radio system is desired to be capable of communication within several frequency bands and in several modes, e.g., time or frequency division duplexing. At a first glance, one can feel that the mechanical assembling of several distinct devices is not the best solution regarding the cost, simplicity and functionality or operability. Hence, the research attempt in developing a rather unified and compact transceiver architecture as opposed to a classical platform with assembled multiple individual devices comes out of horizon, which is addressed specifically in this work. Depending on the wireless functions that are to be integrated within a single multifunction system, the solution should address multiple aspects simultaneously. For instance, any solution for integrating radar and radio related functions should be able to deal with two principal aspects, namely operational waveform and RF front-end architecture. However, in some other above- mentioned examples such as 2D DOA detection system, identical operational waveform may be used and the main challenge of functional integration would pertain to a unification of multiple mono-functional transceivers

    Optical coherent phase diversity systems

    Get PDF

    A Fully Integrated 24-GHz Eight-Element Phased-Array Receiver in Silicon

    Get PDF
    This paper reports the first fully integrated 24-GHz eight-element phased-array receiver in a SiGe BiCMOS technology. The receiver utilizes a heterodyne topology and the signal combining is performed at an IF of 4.8 GHz. The phase-shifting with 4 bits of resolution is realized at the LO port of the first down-conversion mixer. A ring LC voltage-controlled oscillator (VCO) generates 16 different phases of the LO. An integrated 19.2-GHz frequency synthesizer locks the VCO frequency to a 75-MHz external reference. Each signal path achieves a gain of 43 dB, a noise figure of 7.4 dB, and an IIP3 of -11 dBm. The eight-path array achieves an array gain of 61 dB and a peak-to-null ratio of 20 dB and improves the signal-to-noise ratio at the output by 9 dB
    • …
    corecore