5 research outputs found

    Harnessing ChatGPT for thematic analysis: Are we ready?

    Full text link
    ChatGPT is an advanced natural language processing tool with growing applications across various disciplines in medical research. Thematic analysis, a qualitative research method to identify and interpret patterns in data, is one application that stands to benefit from this technology. This viewpoint explores the utilization of ChatGPT in three core phases of thematic analysis within a medical context: 1) direct coding of transcripts, 2) generating themes from a predefined list of codes, and 3) preprocessing quotes for manuscript inclusion. Additionally, we explore the potential of ChatGPT to generate interview transcripts, which may be used for training purposes. We assess the strengths and limitations of using ChatGPT in these roles, highlighting areas where human intervention remains necessary. Overall, we argue that ChatGPT can function as a valuable tool during analysis, enhancing the efficiency of the thematic analysis and offering additional insights into the qualitative data.Comment: 23 pages, 7 figures, 3 tables, 1 textbo

    Discovery of predictors of sudden cardiac arrest in diabetes: rationale and outline of the RESCUED (REcognition of Sudden Cardiac arrest vUlnErability in Diabetes) project

    Get PDF
    Introduction Early recognition of individuals with increased risk of sudden cardiac arrest (SCA) remains challenging. SCA research so far has used data from cardiologist care, but missed most SCA victims, since they were only in general practitioner (GP) care prior to SCA. Studying individuals with type 2 diabetes (T2D) in GP care may help solve this problem, as they have increased risk for SCA, and rich clinical datasets, since they regularly visit their GP for check-up measurements. This information can be further enriched with extensive genetic and metabolic information. Aim To describe the study protocol of the REcognition of Sudden Cardiac arrest vUlnErability in Diabetes (RESCUED) project, which aims at identifying clinical, genetic and metabolic factors contributing to SCA risk in individuals with T2D, and to develop a prognostic model for the risk of SCA. Methods The RESCUED project combines data from dedicated SCA and T2D cohorts, and GP data, from the same region in the Netherlands. Clinical data, genetic data (common and rare variant analysis) and metabolic data (metabolomics) will be analysed (using classical analysis techniques and machine learning methods) and combined into a prognostic model for risk of SCA. Conclusion The RESCUED project is designed to increase our ability at early recognition of elevated SCA risk through an innovative strategy of focusing on GP data and a multidimensional methodology including clinical, genetic and metabolic analyses.Molecular Epidemiolog
    corecore