10,144 research outputs found

    Strategies for Searching Video Content with Text Queries or Video Examples

    Full text link
    The large number of user-generated videos uploaded on to the Internet everyday has led to many commercial video search engines, which mainly rely on text metadata for search. However, metadata is often lacking for user-generated videos, thus these videos are unsearchable by current search engines. Therefore, content-based video retrieval (CBVR) tackles this metadata-scarcity problem by directly analyzing the visual and audio streams of each video. CBVR encompasses multiple research topics, including low-level feature design, feature fusion, semantic detector training and video search/reranking. We present novel strategies in these topics to enhance CBVR in both accuracy and speed under different query inputs, including pure textual queries and query by video examples. Our proposed strategies have been incorporated into our submission for the TRECVID 2014 Multimedia Event Detection evaluation, where our system outperformed other submissions in both text queries and video example queries, thus demonstrating the effectiveness of our proposed approaches

    DCU and UTA at ImageCLEFPhoto 2007

    Get PDF
    Dublin City University (DCU) and University of Tampere(UTA) participated in the ImageCLEF 2007 photographic ad-hoc retrieval task with several monolingual and bilingual runs. Our approach was language independent: text retrieval based on fuzzy s-gram query translation was combined with visual retrieval. Data fusion between text and image content was performed using unsupervised query-time weight generation approaches. Our baseline was a combination of dictionary-based query translation and visual retrieval, which achieved the best result. The best mixed modality runs using fuzzy s-gram translation achieved on average around 83% of the performance of the baseline. Performance was more similar when only top rank precision levels of P10 and P20 were considered. This suggests that fuzzy sgram query translation combined with visual retrieval is a cheap alternative for cross-lingual image retrieval where only a small number of relevant items are required. Both sets of results emphasize the merit of our query-time weight generation schemes for data fusion, with the fused runs exhibiting marked performance increases over single modalities, this is achieved without the use of any prior training data

    N-Grams Assisted Long Web Search Query Optimization

    Get PDF
    Commercial search engines do not return optimal search results when the query is a long or multi-topic one [1]. Long queries are used extensively. While the creator of the long query would most likely use natural language to describe the query, it contains extra information. This information dilutes the results of a web search, and hence decreases the performance as well as quality of the results returned. Kumaran et al. [22] showed that shorter queries extracted from longer user generated queries are more effective for ad-hoc retrieval. Hence reducing these queries by removing extra terms, the quality of the search results can be improved. There are numerous approaches used to address this shortfall. Our approach evaluates various versions of the query, thus trying to find the optimal one. This variation is achieved by reducing the query length using a combination of n-grams assisted query selection as well as a random keyword combination generator. We look at existing approaches and try to improve upon them. We propose a hybrid model that tries to address the shortfalls of an existing technique by incorporating established methods along with new ideas. We use the existing models and plug in information with the help of n-grams as well as randomization to improve the overall performance while keeping any overhead calculations in check

    Applying Machine Translation to Two-Stage Cross-Language Information Retrieval

    Full text link
    Cross-language information retrieval (CLIR), where queries and documents are in different languages, needs a translation of queries and/or documents, so as to standardize both of them into a common representation. For this purpose, the use of machine translation is an effective approach. However, computational cost is prohibitive in translating large-scale document collections. To resolve this problem, we propose a two-stage CLIR method. First, we translate a given query into the document language, and retrieve a limited number of foreign documents. Second, we machine translate only those documents into the user language, and re-rank them based on the translation result. We also show the effectiveness of our method by way of experiments using Japanese queries and English technical documents.Comment: 13 pages, 1 Postscript figur

    A practical exploration of the convergence of case-based reasoning and explainable artificial intelligence.

    Get PDF
    As Artificial Intelligence (AI) systems become increasingly complex, ensuring their decisions are transparent and understandable to users has become paramount. This paper explores the integration of Case-Based Reasoning (CBR) with Explainable Artificial Intelligence (XAI) through a real-world example, which presents an innovative CBR-driven XAI platform. This study investigates how CBR, a method that solves new problems based on the solutions of similar past problems, can be harnessed to enhance the explainability of AI systems. Though the literature has few works on the synergy between CBR and XAI, exploring the principles for developing a CBR-driven XAI platform is necessary. This exploration outlines the key features and functionalities, examines the alignment of CBR principles with XAI goals to make AI reasoning more transparent to users, and discusses methodological strategies for integrating CBR into XAI frameworks. Through a case study of our CBR-driven XAI platform, iSee: Intelligent Sharing of Explanation Experience, we demonstrate the practical application of these principles, highlighting the enhancement of system transparency and user trust. The platform elucidates the decision-making processes of AI models and adapts to provide explanations tailored to diverse user needs. Our findings emphasize the importance of interdisciplinary approaches in AI research and the significant role CBR can play in advancing the goals of XAI

    GeoCLEF 2006: the CLEF 2006 Ccross-language geographic information retrieval track overview

    Get PDF
    After being a pilot track in 2005, GeoCLEF advanced to be a regular track within CLEF 2006. The purpose of GeoCLEF is to test and evaluate cross-language geographic information retrieval (GIR): retrieval for topics with a geographic specification. For GeoCLEF 2006, twenty-five search topics were defined by the organizing groups for searching English, German, Portuguese and Spanish document collections. Topics were translated into English, German, Portuguese, Spanish and Japanese. Several topics in 2006 were significantly more geographically challenging than in 2005. Seventeen groups submitted 149 runs (up from eleven groups and 117 runs in GeoCLEF 2005). The groups used a variety of approaches, including geographic bounding boxes, named entity extraction and external knowledge bases (geographic thesauri and ontologies and gazetteers)

    Cognitive Personalized Search Integrating Large Language Models with an Efficient Memory Mechanism

    Full text link
    Traditional search engines usually provide identical search results for all users, overlooking individual preferences. To counter this limitation, personalized search has been developed to re-rank results based on user preferences derived from query logs. Deep learning-based personalized search methods have shown promise, but they rely heavily on abundant training data, making them susceptible to data sparsity challenges. This paper proposes a Cognitive Personalized Search (CoPS) model, which integrates Large Language Models (LLMs) with a cognitive memory mechanism inspired by human cognition. CoPS employs LLMs to enhance user modeling and user search experience. The cognitive memory mechanism comprises sensory memory for quick sensory responses, working memory for sophisticated cognitive responses, and long-term memory for storing historical interactions. CoPS handles new queries using a three-step approach: identifying re-finding behaviors, constructing user profiles with relevant historical information, and ranking documents based on personalized query intent. Experiments show that CoPS outperforms baseline models in zero-shot scenarios.Comment: Accepted by WWW 202
    corecore