3 research outputs found

    Utilizing Dental Electronic Health Records Data to Predict Risk for Periodontal Disease

    Get PDF
    Periodontal disease is a major cause for tooth loss and adversely affects individuals' oral health and quality of life. Research shows its potential association with systemic diseases like diabetes and cardiovascular disease, and social habits such as smoking. This study explores mining potential risk factors from dental electronic health records to predict and display patients' contextualized risk for periodontal disease. We retrieved relevant risk factors from structured and unstructured data on 2,370 patients who underwent comprehensive oral examinations at the Indiana University School of Dentistry, Indianapolis, IN, USA. Predicting overall risk and displaying relationships between risk factors and their influence on the patient's oral and general health can be a powerful educational and disease management tool for patients and clinicians at the point of care

    Futuro de la inteligencia artificial en Odontología

    Get PDF
    Sr. Editor. La medicina se identificó pronto como uno de los ámbitos de aplicación más prometedores para la inteligencia artificial (AI). Desde mediados del siglo XX, los investigadores han propuesto y desarrollado muchos sistemas de apoyo a la decisión clínica. El desarrollo de chips cada vez más veloces y potentes, unido al aumento de la capacidad de almacenamiento a bajo costo y la popularización de lenguajes de programación como Python y librerías que facilitan el desarrollo de algoritmos, ha permitido un aumento exponencial en la investigación y desarrollo de aplicaciones de AI

    Application of artificial intelligence in the dental field : A literature review

    Get PDF
    Purpose: The purpose of this study was to comprehensively review the literature regarding the application of artificial intelligence (AI) in the dental field, focusing on the evaluation criteria and architecture types. Study selection: Electronic databases (PubMed, Cochrane Library, Scopus) were searched. Full-text articles describing the clinical application of AI for the detection, diagnosis, and treatment of lesions and the AI method/architecture were included. Results: The primary search presented 422 studies from 1996 to 2019, and 58 studies were finally selected. Regarding the year of publication, the oldest study, which was reported in 1996, focused on “oral and maxillofacial surgery.” Machine-learning architectures were employed in the selected studies, while approximately half of them (29/58) employed neural networks. Regarding the evaluation criteria, eight studies compared the results obtained by AI with the diagnoses formulated by dentists, while several studies compared two or more architectures in terms of performance. The following parameters were employed for evaluating the AI performance: accuracy, sensitivity, specificity, mean absolute error, root mean squared error, and area under the receiver operating characteristic curve. Conclusion: Application of AI in the dental field has progressed; however, the criteria for evaluating the efficacy of AI have not been clarified. It is necessary to obtain better quality data for machine learning to achieve the effective diagnosis of lesions and suitable treatment planning
    corecore