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1.  Introduction

Recently, advanced in information science and technology have 
led to an explosive increase in data in various fields. Therefore, the 
importance of comprehensively processing enormous amounts of 
data, often called big data, has been highlighted, and hence, arti-
ficial intelligence (AI) has been widely used[1–3]. AI is a conceptual 
term denoting a series of basic technologies that enable digital sys-
tems or computers to perform functions involving human-like intel-
ligence. The concept of AI was first defined by McCarthy in 1956[4]. 
In various industrial fields, many studies have considered the social 
implementations of big data analysis, robot control, voice or image 
recognition facilities, and automated driving using AI[5–7]. Studies 
have also been conducted to investigate the application of AI in the 
medical field. In particular, studies on expert systems such as MY-
CIN, which is a recommended antibacterial drug selection system 
for diagnosing infectious diseases, and INTERNIST-1, which is a gen-
eral medical diagnosis support system, were reported in 1974[8,9]. 
Several decades later, Hinton et al. (2006) developed deep learning 

and convolutional neural networks (CNNs), which were presented at 
the ImageNet Large-Scale Visual Recognition Challenge in 2012[10]. 
Currently, many studies related to the application of CNNs to classify 
brain tumors or diagnose cancer from skin images are being con-
ducted worldwide[11–13]. 

The application of digital technology has advanced rapidly in 
the dental field. Furthermore, computer-aided design and manufac-
turing (CAD/CAM) in prosthodontic treatment and implant simula-
tion software or analysis systems in orthodontic treatment have 
been developed[14–16]. Although some research related to the ap-
plication of AI in the dental field has been conducted, little informa-
tion is available on its architecture and effectiveness.

The purpose of this study was to comprehensively review the 
literature concerning the application of AI in the dental field, focus-
ing on the evaluation criteria and architecture types in different sub-
fields.

2.  Materials and Methods

In this study, we investigated the purpose of AI application in 
the dental field and the individual problems that it aimed to resolve.
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2.1.  Information sources and search

An electronic search of English language literature published 
between January 1980 and June 2019 was performed using the 
MEDLINE (via PubMed), Cochrane Library (via Cochrane Central Reg-
ister of Controlled Trials, CENTRAL), and Scopus. Electronic database 
searches were performed using keywords and MeSH terms based on 
a search strategy used for searching MEDLINE (via PubMed): (“Arti-
ficial Intelligence” [Mesh] OR “Neural Networks, Computer” [Mesh] 
OR “Neural network” [all fields] OR “Data Mining” [Mesh] OR “Data 
mining” [all fields]) AND “Dentistry” [all fields]. In addition to these 
database searches, manual searches were also performed.

2.2.   Inclusion criteria

The articles were selected based on the following inclusion 
criteria: articles in which AI was applied clinically for the detection, 
diagnosis, and treatment of lesions in the dental field; articles that 
clearly stated the subject of the evaluation; articles describing the 
AI method/architecture used; and original articles written in English. 
Articles that merely introduced theories, architecture, and tech-
niques were excluded.

2.3.  Study selection

Figure 1 shows the literature search strategy used in this study. 
The literature search was evaluated by the two authors (T. K. and T. 
M.) who had previously confirmed the criteria independently.

First, the articles that adhered to the purpose of this study were 
selected from the titles and abstracts. After confirming that the re-

sults of the two examiners were identical, a full examination of the 
manuscripts was performed and the articles were screened again.

Articles that did not match the search results of the two authors 
were discussed with a third reviewer (T. G.), and finally, the docu-
ments to be used for researching AI application in the dental field 
were selected.

2.4.  Data collection process and data items

An extraction sheet for data collection was created using Micro-
soft Excel software (Microsoft Office Professional 2016, CA, USA). The 
sheet listed the author, publication year, reference number, report-
ing institution, field, presence of human versus AI results, architec-
ture of machine learning, evaluation items, number of datasets, type 
of input data, and evaluation results. After summarizing the results 
for each subfield, a literature review was performed.

3.  Results

3.1.  Study selection

As shown in Figure 1, the primary search presented 422 stud-
ies from January 1996 to June 2019. After reviewing the titles and 
abstracts, 104 studies were selected for full-text assessment. Finally, 
after applying the inclusion criteria, 58 studies were selected and clas-
sified into the following seven fields: “Conservative dentistry” (includ-
ing endodontics), “Periodontitis,” “Prosthodontics,” “Orthodontics,” 
“Oral and maxillofacial surgery,” “Forensic dentistry,” and “Others.” 
The “Others” class consisted of studies concerning temporomandibu-
lar disorders (TMD), oral malodor, and fraud in dentistry.
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Fig. 1.  Literature review strategy.



Regarding the number of published studies, eight studies re-
ported on “Conservative dentistry”[17–24], seven on “Periodonti-
tis”[25–31], six on “Prosthodontics”[32–37], eight on “Orthodon-
tics”[38–45], thirteen on “Oral and maxillofacial surgery”[46–58], and 
ten on “Forensic dentistry”[59–68], and six studies pertained to the 
class “Others”[69–74].

Regarding the year of publication, the oldest study was re-
ported in 1996 and focused on “Oral and maxillofacial surgery.” The 
number of studies in each period was three in the 1990s, two in the 
early 2000s, six in the late 2000s, and seven in the early 2010s; while 
the last number was less than 10 initially, it increased to 40 studies 
rapidly in the late 2010s.

3.2.  Architectures and evaluations

The selected studies employed the following machine-learning 
architectures: artificial neural networks (ANNs), CNNs, support vector 
machine (SVM), linear discriminant analysis (LDA), decision tree (DT), 
random forest (RF), natural language processing (NLP), k-nearest 
neighbor (k-NN), expert system (ExS), case-based reasoning (CBR), 
fuzzy logic (FL), Bayesian inference (BI), logistic regression (LR), and 
the k-means method (k-means). ANNs are computing systems that 
are inspired by the neuronal networks of the human brain, and uti-
lize many neurons to classify input data. The data are then processed 
and transmitted to successive adjacent layers until the output layer 
provides an outcome. CNNs are specialized types of ANNs, and are 
considered deep learning technique. Deep learning is capable of au-
tomatically extracting image features using features provided by the 
machine itself. SVM and LDA are statistical algorithms that separate 
datasets into subgroups with different characteristics using an ap-
propriate separation plane. DT is a machine-learning technique that 
is used to classify a statistical population by partition functions. RF 
consists of DT subsets and combines their outputs to improve per-
formance. Furthermore, NLP is a technology that converts human 
natural language into computer language and searches for target 
keywords in text data. The k-NN algorithm finds k samples in newly 
added data with the most similar features among the training data; 
then, it uses sample categories to weigh the category candidates. 
ExS, CBR, and FL use a database of previously treated cases created 
by professionals to provide knowledge for treatment planning. BI 
predicts the outcome with the highest predicted probability given a 
particular input. LR is a data analytics tool used to estimate equations 
with binary-dependent variables. In addition, the k-means method is 
a machine-learning technique involving partitioning or grouping a 
given dataset with particular patterns into disjoint clusters.

The above-mentioned machine-learning architectures were em-
ployed in the selected studies; most studies (16/58) employed ANNs. 
With regard to the subject of evaluation, different types of subjects 
were used (e.g., patient information or the presence of bacteria in sa-
liva); however, most studies (35/58) used digital images to detect and 
diagnose lesions. Regarding the evaluation criteria, 12 studies com-
pared the results obtained by AI with the diagnoses formulated by 
dentists, while several studies compared two or more architectures 
in terms of performance. The following parameters were employed 
for evaluating AI performance: accuracy, sensitivity, specificity, pre-
cision, mean absolute error (MAE), root mean squared error (RMSE), 
and the area under the receiver operating characteristic curve (AUC).

3.3.  Study characteristics

The characteristics of the selected studies are summarized in 
Table 1.

3.3.1.  Conservative dentistry

In the field of conservative dentistry, including endodon-
tics[17–24], most studies reported the detection of lesions on X-ray 
images, that is, dental caries (four studies), vertical root fracture (two 
studies), and apical lesion (one study). Al Haidan et al. proposed a 
mathematical model predicting tooth abrasion or erosion from in-
put data, such as the frequency of brushing teeth, diet information, 
and a habit of tooth clenching[21]. Regarding architecture, the au-
thors used ANNs in five studies, CNNs in two studies, and ExS in one 
study. Moreover, Ekert et al., Araki et al., and Devito et al.[17,23,24] 
compared the AI-obtained results with human diagnoses. In the five 
studies that presented assessment results, the accuracy, sensitiv-
ity, specificity, and AUC values were 70.0%–96.6%, 65.0%–100.0%, 
60.0%–100.0%, and 0.662–0.850, respectively.

3.3.2.  Periodontics

In the field of periodontics[25–31], two studies reported the 
radiographic detection of periodontal bone loss using periapical or 
panoramic radiographs. Three studies classified patients into plau-
sible periodontal disease types based on various types of input data, 
such as bacterial species in subgingival biofilms, patient informa-
tion and oral conditions, and clinical and immunologic data from 
previous studies. Meissner et al. detected calculus on the surface 
of extracted human teeth using a dental ultrasonic scaler and me-
chanical oscillation system[31]. Regarding architecture, four studies 
used ANNs or CNNs, and one compared the ANN results with those 
obtained from SVM and DT. In addition, some studies used only one 
type of architecture, namely, SVM, FL, or LDA. As regards assessment 
results, the accuracy, sensitivity, specificity, precision, and AUC val-
ues were 73.4%–98.6%, 46.0%–98.0%, 79.0%–98.1%, 93%, and 0.73–
0.83, respectively. Finally, Krois et al. and Lee et al. compared the AI 
performance with the subjective assessment of dental practitioners 
in the diagnosis of periodontitis[25,27].

3.3.3.  Prosthodontics

In the field of prosthodontics, three studies used image datas-
ets, such as photographic and three-dimensional (3D) scanning data. 
The remaining three studies used text data, such as oral condition 
and radiographic findings[32–37]. Vaccaro et al. recognized mixture 
patterns on photographic images of masticated two-colored chew-
ing gum, and assessed the masticatory efficiency[32].

Raith et al. classified specific features of teeth using a virtual 
model of tthe human dental arch[34]. Additionally, Cheng et al. pro-
posed a method for predicting the change in facial appearance after 
complete denture placement using facial scan data[36]. Chen et al. in-
vestigated the decision models of removable partial denture designs 
based on information such as oral hygiene, oral soft tissue condition, 
and periodontal condition[35]. Papantonopoulos et al. predicted the 
stage of peri-implantitis based on oral condition assessments and 
radiography images[33]. Regarding architecture type, three studies 
used ANNs, while SVM, CBR, and k-NN were each used in one study. 
As for the assessment results, the accuracy, sensitivity,and specificity 
were 93.3%–93.5%, 52.6%–98.0%, and 70.7%–99.0%, respectively. 

T. Kishimoto,  et al. / J Prosthodont Res. 2022; 66(1): 19–28 21



Moreover, the RMSE and AUC values were 0.149 and 0.96, respec-
tively. Furthermore, Cheng et al. employed the average error as the 
evaluation criteria[36]. Chen et al. reported that removable partial 
denture designs selected by professionals were defined as the cor-
rect reference result for comparison with the AI results[35].

3.3.4.  Orthodontics

In the field of orthodontics[38–45], three studies used image 
datasets; one of them examined the changes in appearance of pre- 
and post-treatment facial photographs to assess the impact of orth-
odontic treatment, and the remaining two studies conducted clas-
sification of skeletal patterns and recognition of anatomic landmarks 
using lateral cephalograms. In addition, the cephalometric variables 
in two studies and the orthodontic treatment records in three stud-
ies were used for the classification of skeletal patterns, diagnosis of 
tooth extraction for orthodontic treatment, appropriate selection of 
headgear type, and treatment planning. As regards the architecture 
type, FL was used in two studies, while ANNs, CNNs, SVM, DT, and ExS 
were each used in one study. Furthermore, Tanikawa et al. employed 
a system called the “projected principal edge distribution”[42]. Re-

garding assessment results, most studies in this field evaluated 
the performance using the success rate, achieving 80.0%–97%. Fi-
nally, experienced orthodontists evaluated the results obtained by 
AI in the studies by Akçam et al., Sorihashi et al., and Hammond et 
al.[43–45].

3.3.5.  Oral and maxillofacial surgery

In the field of oral and maxillofacial surgery[46–58], most stud-
ies performed the detection of tumors using image data, that is, ra-
diographic (six studies), microscopic (three studies), and ultrasono-
graphic (one study) images. In addition, two studies used medical 
records, including medication consumption, and one study used the 
exosome spectrum obtained from saliva. These input data were used 
for the detection of oral cancers and tumors in five studies, osteo-
porosis in four studies, cystic lesions in three studies, and maxillary 
sinusitis in one study. Regarding architecture type, most studies em-
ployed ANNs, CNNs, SVM, DT, and RF, and compared more than two 
architectures. Florindo et al. developed a system that implemented 
the Bouligand-Minkowski fractal descriptors[50], and Caruntu et 
al. proposed the Zeiss KS400 environment[56]. With respect to the 
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Table 1.  Characteristics of included studies 
Field: Conservative dentistry

Author Year Comparison 
to human  
assessment

Architecture Outcome Number of 
datasets

Type of input 
data

Evaluation

Ekert T, et al 2019 vs human CNNs Apical Lesions 2001 images Image data Se: 0.65, Sp: 0.87, AUC: 0.85

Patil S, et al 2019 — ANNs Caries 120 images Image data A: 0.95, Se: 1.00, Sp: 0.90

Lee JH, et al 2018 — CNNs Caries 3000 images Image data A: 82.0%, Se: 81.0%, 
Sp: 83.0%,AUC: 0.845

Johari M, et al 2017 — ANNs Root fracture 240 images Image data Periapical radiographs = A: 70.00%, 
Se: 97.78%, Sp: 67.7% 
CBCT images = A: 96.6%, Se: 93.3%, 
Sp: 100.0%

Al Haidan A, et al 2014 — ANNs Tooth surface 
loss

61 subjects Numerical data A: 73.3%

Kositbowornchai S, 
et al

2012 — ANNs Root fracture 200 images Image data A: 88.3%, Se: 97.8%, 
Sp: 60.0%

Araki K, et al 2010 vs human Logicon Caries 
Detector

Caries 50 images Image data AUC: 0.662

Devito KL, et al 2008 vs human ANNs Caries 160 images Image data + 
Numerical data

AUC: 0.717

Field: Periodontics

Author Year Comparison to 
human assess-
ment

Architecture Outcome Number of 
datasets

Type of input 
data

Evaluation

Krois J, et al 2019 vs human CNNs Periodontal 
bone loss

2001 images Image data + 
Numerical data

A: 0.81, Se: 0.81, 
Sp: 0.81

Feres M, et al 2018 — SVM Periodontal 
classification

435 patients Numerical data Se: 86%, Sp: 79%, AUC: 0.83

Lee JH, et al 2018 vs human CNNs Periodontal 
compromise 
teeth

1740 images Image data + 
Numerical data

Premolars = A: 82.8%, AUC: 0.83 
Molars = A: 73.4%, AUC: 0.73

Ozden FO, et al 2015 — ANNs, SVM, DT Periodontal 
classification

150 patients Numerical data SVM = Se: 98%, 
DT = Se: 98% 
NN = Se: 46%

Thyvalikakath TP, et al 2015 — LDA Periodontal risk 2370 patients Numerical data A: 92%, P: 93%

Papantonopoulos 
G, et al

2014 — ANNs Periodontal 
classification

347 patients Numerical data A: 98.6%, Se: 97.9%, Sp: 98.1%

Meissner G, et al 2006 — FL Calculus 234 teeth Numerical data Se: 76%, Sp: 86%



assessment results, the above-mentioned studies achieved accu-
racy, sensitivity, specificity, and AUC values of 83.0%–98.9%, 81.8%–
100.0%, 76.7%–98.4%, and 0.88, respectively. Finally, Tanaka et al. 
reported a successful computer-assisted diagnosis formulated by an 
unskilled clinician using an ExS system[57].

3.3.6.  Forensic dentistry

In this review, forensic dentistry corresponds to the identification 
of victims of large-scale disasters based on dental records[59–68]. 
Most studies concerning dental identification handle information 
acquired from radiographic images. Input data were used for the rec-
ognition and identification of tooth types (four studies), age estima-
tion using pulp-to-tooth ratio in canines or classification of stages of 
third molar development (two studies), and the identification of peo-
ple based on dental records such as the shape, location, and treat-
ment of teeth (two studies). The prediction of the mandibular bone 
morphology and classification of common dental diseases, such as 
decay and cracked dental root, were each conducted in one study. 

CNNs were used in five studies, while ANNs, FL, and k-means were 
each used in one study. Furthermore, Chen et al. experimented with 
the contour-matching algorithm, and Chomdej et al. explored an in-
telligent dental identification system[67,68]. The above-mentioned 
studies achieved accuracy and precision values of 52.0%–93.0% 
and 79.2%–95.8%, respectively. MAE and RMSE were 0.09–4.121 and 
0.09–4.403, respectively.

3.3.7.  Others

In this field, there were four studies on temporomandibular 
joint disorders, one study on the detection of fraud in dentistry, and 
one study on the classification of oral malodor[69–74]. De Dumast 
et al. classified five stages of degenerative condylar bone change in 
temporomandibular joint osteoarthritis using cone beam computed 
tomography scans[69]. Nam et al. used the same method to differen-
tiate TMD-like symptoms, such as trismus and jaw pain, from genuine 
TMD by text mining using NLP. The text-mining technology extract-
ed useful information from text data, including chief complaints, 
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Table 1.  (Continued) 
Field: Prosthodontics

Author Year Comparison to 
human assess-
ment

Architecture Outcome Number of 
datasets

Type of input 
data

Evaluation

Vaccaro G, et al 2018 — ANNs Masticatory 
efficiency

400 images Image data Se: 98%, Sp: 99%

Papantonopoulos 
G, et al

2017 — SVM Implant bone 
levels

72 patients Numerical data RMSE: 0.149

Raith S, et al 2017 — ANNs Dental cusps 
classification

129 images Image data A: 93.3–93.5%

Chen Q, et al 2016 vs human CBR Removable 
partial denture 
design

104 patients Numerical data AUC: 0.96

Cheng C, et al 2015 — ANNs Facial deforma-
tion after com-
plete denture 
prosthesis

48 images Image data Average error: 22.94%

Papantonopoulos 
G, et al

2015 — k-NN Peri-implant 
bone levels

94 patients Numerical data Se: 52.6%, Sp: 70.7%

Field: Orthodontics

Author Year Comparison to 
human assess-
ment

Architecture Outcome Number of 
datasets

Type of input 
data

Evaluation

Patcas R, et al 2019 — CNNs Changes in 
facial appear-
ance

2164 images Image data —

Auconi P, et al 2017 — DT Skeletal growth 91 subjects Numerical data Misclassification rate: 12.1%

Jung SK, et al 2016 — ANNs Teeth extrac-
tions

156 subjects Numerical data Success rates: 84%

Niño-Sandoval TC, 
et al

2016 — SVM Skeletal pat-
terns

229 images Image data A: 74.51%

Tanikawa C, et al 2009 — Projected 
principal edge 
distribution

Anatomic land-
marks

465 images Image data Success rate: 88%

Akçam MO, et al 2002 vs human FL Types of head-
gear

85 cases Numerical data Satisfaction rate of examiners: 95.6%

Sorihashi Y, et al 2000 vs human FL Skeletal pat-
terns

175 cases Numerical data Orthodontists agreed rate: 97%

Hammond RM, et al 1997 vs human ExS Treatment plan-
ning

330 cases Numerical data Success rate: 80.0%
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Field: Forensic dentistry

Author Year Comparison to 
human assess-
ment

Architecture Outcome Number of da-
tasets

Type of input 
data

Evaluation

Chen H, et al 2019 — CNNs Teeth recogni-
tion

1250 images Image data —

Farhadian M, et al 2019 — CNNs Age 300 images Image data MAE: 4.121, RMSE: 4.403

Zhang K, et al 2018 — CNNs Teeth recogni-
tion

1000 images Image data P: 95.8%, F score: 0.96

De Tobel J, et al 2017 — CNNs Age 400 images Image data A: 0.52, Linear kappa coefficient: 0.82

Miki Y, et al 2017 — CNNs Teeth recogni-
tion

52 images Image data A: 88.8%

Niño-Sandoval TC, 
et al

2017 — ANNs M a n d i b u l a r 
morphology

229 images Image data Coefficients: 0.84–0.99 
Support vector regression: 0.7

Wang L, et al 2017 — k-means meth-
od

Teeth recogni-
tion

280 images Image data A: 0.769–0.848. P: 0.792–0.910

Ngan TT, et al 2016 — FL Medical diag-
nosis

66 images Image data A: 93.0%, MAE: 0.09, MSE: 0.09

Chen H, et al 2005 — Contour match-
ing algorithm

Dental identifi-
cation

235 images Image data A: 72.0%

Chomdej T, et al 2005 — Intelligent den-
tal identifica-
tion system

Dental identifi-
cation

4000 patients Numerical data Identification range: 82.61–100% 
Minimal error: 0–1.19%

Table 1.  (Continued) 
Field: Oral and maxillofacial surgery

Author Year Comparison to 
human assess-
ment

Architecture Outcome Number of 
datasets

Type of input 
data

Evaluation

Murata M, et al 2019 — CNNs Maxillary 
sinusitis

12000 images Image data A: 87.5%, Se: 86.7%, 
Sp: 88.3%, AUC: 0.88

Zlotogorski-Hurvitz 
A, et al

2019 — LDA, SVM Oral cancer 34 patients Numerical data LDA = A: 95%, Se: 100%, Sp: 89% 
SVM = A: 89%

Kim DW, et al 2018 — ANNs, SVM, LR, 
DT, RF

Osteonecrosis 125 patients Numerical data Se: 100%, Sp: 76.7%

Poedjiastoeti W, et al 2018 — CNN Jaw tumors 500 images Image data A: 83.0%, Se: 81.8%, Sp: 83.3%

Florindo JB, et al 2017 — Bouligand-
Minkowski 
fractal  
descriptors

Radicular cyst 150 images Image data A: 98%

Hwang JJ, et al 2017 — SVM Osteoporosis 454 images Image data A: 96.9%, Se: 97.2%, 
Sp: 97.1%

Yilmaz E, et al 2017 — ANNs, 
SVM

Periapical cyst 
and keratocys-
tic odontogenic 
tumor

50 images Image data ANNs = A: 92.0%, 
F score: 91.7% 
SVM = A: 94.0%, 
F score: 94.0%

Kavitha MS, et al 2016 — FL Osteoporosis 141 images Image data At lumbar spine = A: 96.01%, Se: 
95.3%, Sp: 94.7% 
At femoral neck = A: 98.9%, Se: 
99.1%, Sp: 98.4%

Kavitha MS, et al 2015 — BI, 
k-NN, 
SVM

Osteoporosis 141 patients Image data BI = A: 95.3%, Se: 96.1%, Sp: 87.3% 
k-NN = A: 92.1%, Se: 96.6%, Sp: 82.0% 
SVM = A: 96.8%, Se: 96.6%, Sp: 89.3%

Frydenlund A, et al 2014 — SVM, 
LR

Odontogenic 
cyst

149 images Image data SVM = correctly predicted: 83.8%–
92.3% 
LR = correctly predicted: 90%–95.4%

Caruntu ID, et al 2005 — Zeiss KS400 
environment

Tumoral cell 1500 images Image data —

Tanaka T, et al 1997 vs human ExS Tumors 30 images Image data + 
Numerical data

Increase in A: 8.5%, 
Increase in Se: 10.7%, 
Increase in Sp: 6.4%

Firriolo FJ, et al 1996 vs human ExS Salivary gland 
neoplasms

20 cases Numerical data Performance: 90%–60%



medical history, and objective examination results[70]. Nakano et al. 
presented an SVM-based method for classifying oral malodor from 
oral microbiota in saliva[73]. Wang et al. deployed social networks 
to evaluate the trustworthiness of dentists and to detect fraudulent 
ones. If a large number of patients who had received an initial treat-
ment from a dentist also received subsequent treatment from other 
dentists for the same dental problem within a short period, the first 
dentist was suspected of providing inadequate treatment[71]. Iwa-
saki et al. applied BI to determine the progression of TMD, and in-
vestigated the relationship between condylar bone changes, bony 
space, and joint disc deformation and displacement[72]. Bas et al. 
used ANNs for the prediction of two TMD subgroups, anterior disc 
displacement with and without reduction, and the use of input data 
such as clicking noise, maximal mouth opening, and pain during 
mandibular movement[74]. The accuracy, sensitivity, and specificity 
were 71.5%–94.0%, 37.0%–100.0%, and 45.5%–100.0%, respectively. 
Finally, using the resubstitution validation method, Iwasaki et al. 
achieved a performance of 99.5%–100%[72].

4.  Discussion

There has been rapid progress in research on the development 
of AI, particularly with the advancement of high-performance com-
puters during the 1980s. In fact, many types of architectures were 
established for statistical analysis, laying the foundation for contem-
porary AI technology in the 1990s. Thus, the studies that were con-
sidered also employed various architectures. The machine-learning 
part of AI-based statistics is broadly divided into supervised machine 
learning (SML) and unsupervised machine learning (UML)[75]. SML 
constructs a regression or classification structure by training a clas-
sifier that is adjustable to new data using labeled data. Examples of 
SML include CNNs, SVM as a pattern recognition structure, and RF 
consisting of DT[76,77]. In contrast, UML implements rules to cat-
egorize input data by their features without using labeled data as 
a reference. Examples of UML include principal component analysis 
(PCA), clustering, and k-means methods. PCA reveals the simplified 
structures hidden in complex datasets by reducing them to lower di-
mensions. The methods of clustering and k-means classify data into 
categories based on similarity between data samples[78,79]. In this 
review, most studies considered the application of AI to the dental 
field by using SML, and only one study used the UML method of k-
means. In addition, data mining is an important element of AI ap-

plications. Data mining is a generic term that refers to data analysis 
conducted using various calculation algorithms[80].

Scoping reviews on the application of AI in the dental field have 
already been reported[81–83]. However, these past reviews only 
focused on dental image diagnosis using digital images[82,83] and 
ANN architectures without keywords and search formulas[81]. In this 
research, we focus not only on image diagnosis but also on diagno-
ses based on patient information and treatment planning decisions. 
Moreover, the architectures deployed in each study were surveyed, 
and a comprehensive literature review was conducted on the appli-
cation of AI in the dental field.

In our literature search, we focused on three keywords: artificial 
intelligence, neural networks, and data mining. These keywords are 
MeSH terms and belong to separate disjoint categories without du-
plication. However, we obtained the same results when searching 
for additional keywords that were related to each analysis method. 
Therefore, we consider our search strategy to be reasonable, and 
claim to have collected an adequate number of research papers to 
perform a literature review on AI applications in the dental field. 
Moreover, for a comprehensive discussion, we included studies with-
out considering the dataset size or evaluation values such as accu-
racy.

Since the 1970s, many researchers have attempted to apply AI 
in the medical field. Nevertheless, the oldest study in the dental field 
was reported in 1996; thus, there is a relatively short history of the 
application of AI in the dental field. Medical companies have devel-
oped various products that aim to perform segmentation of target 
areas (e.g., organs) and detection of lesion areas via radiography (i.e., 
computer-aided detection) and to improve work efficiency in the 
reading of radiographs[84,85]. In the dental field, joint research with 
dental companies has not been reported.

Most studies included in the review used radiographic images 
as data samples for the diagnosis or detection of lesions. In oral and 
maxillofacial surgery, conservative dentistry, and orthodontics, diag-
noses are often formulated from conventional radiographs. More-
over, a correlation has been observed between the reading time 
of radiographs per case and misdiagnosis; for example, Berlin et al. 
reported that when the reading time was reduced by 50%, the mis-
diagnosis rate increased by 16.6%[86]. It is desirable that AI would be 
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Table 1.  (Continued) 
Field: Others

Author Year Comparison to 
human assess-
ment

Architecture Outcome Number of 
datasets

Type of input 
data

Evaluation

de Dumast P, et al 2018 — CNNs TMD 259 images Image data —

Nam Y, et al 2018 — NLP TMD 319 patients Numerical data The predictive performance: 96.6%, 
Se: 69.0%, Sp: 99.3%

Wang SL, et al 2017 — ZeroR classifier Fraud in den-
tistry

500 dentists Numerical data A: 0.94

Iwasaki H 2015 — BI TMD 295 cases Numerical data Resubstitution validation: 99.5–100%

Nakano Y, et al 2014 — ANNs, SVM, DT Oral malodor 309 subjects Numerical data SVM = A: 82.5%, Se: 95.0%, Sp: 51.1% 
ANNs = A: 81.9%, Se: 90.5%, Sp: 
60.2% 
DT = A: 71.5%, Se: 82.3%, Sp: 45.5%

Bas B, et al 2012 vs human ANNs TMD 219 patients Numerical data ADDwR = Se: 80–100%, Sp: 95–89% 
ADDwoR = Se: 37–69%, Sp: 91–100%



applicable not only for imaging diagnosis but also for comprehen-
sive diagnosis in the stomatognathic system.

We also reviewed many studies that focus on forensic dentistry, 
such as personal identification from dental records. When large-
scale disasters occur (e.g., tsunamis, earthquakes, and typhoons), if a 
body is severely damaged, identification using belongings, clothes, 
and fingerprints is often challenging. Dental records are consid-
ered strong and reliable evidence in such situations[87,88]. Match-
ing radiographic images of the victims’ remains with those taken at 
a medical facility while they were alive may be a quick and reliable 
method of identification. In this field, we expect the use of AI to be 
particularly beneficial.

In many situations in the dental field, direct vision is sufficient 
for diagnosis; therefore, there are limited diseases and clinical con-
ditions that need to be diagnosed otherwise. Furthermore, in the 
restorative, prosthodontic, and orthodontic fields, where treatment 
skills are considered more important than diagnosing ability, the po-
tential applicability of AI is limited. However, in the future, imaging 
information sources such as X-rays will not be the only data source; 
3D data, such as those of the dental arch obtained when using an in-
traoral scanner, will be easily obtained. Therefore, for the restorative 
and orthodontic fields, AI is also expected to facilitate medical treat-
ment planning and prosthesis design, including structural calcula-
tions such as computer-aided engineering.

Moreover, it is assumed that a vague medical treatment plan in 
the dental field can be made objective by considering the evalua-
tion value of AI and by ensuring that each report shows progress. The 
optimal answer to a dental problem can be automatically predicted 
by AI using a large amount of data, as AI can automatically learn a 
large number of features and explanatory variables. Nevertheless, to 
utilize AI exhaustively, data should not only be plentiful but also of 
high quality; therefore, the process of data cleansing is crucial[89]. In 
the medical field, across local and university hospitals, attempts have 
been made to construct an image database of cases aimed at the col-
lection of learning data. To utilize AI in the dental field, it is necessary 
to standardize the evaluation methods and to create a database of 
X-ray and intraoral images.

5.  Conclusion

The present literature review revealed that the oldest study re-
garding the use of AI in the dental field was reported in the 1990s. 
Additionally, most studies that were included in this review showed 
good results; however, the criteria for evaluating the efficacy of AI 
have not been clarified. It is necessary to collect better quality data 
for machine learning to realize the effective diagnosis of lesions and 
suitable treatment planning. This can be accomplished using AI 
through the construction of public case databases and by the stan-
dardization of the evaluation methods and criteria.
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