1,327 research outputs found

    Artificial Intelligence Techniques That May Be Applied to Primary Care Data to Facilitate Earlier Diagnosis of Cancer : Systematic Review

    Get PDF
    Acknowledgments This research was funded by the National Institute for Health Research (NIHR) Policy Research Programme, conducted through the Policy Research Unit in Cancer Awareness, Screening, and Early Diagnosis, PR-PRU-1217-21601. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. This work was also supported by the CanTest Collaborative (funded by Cancer Research UK C8640/A23385), of which FW and WH are directors and JE, HS, and NdW are associate directors. HS is additionally supported by the Houston Veterans Administration Health Services Research and Development Center for Innovations in Quality, Effectiveness, and Safety (CIN13-413) and the Agency for Healthcare Research and Quality (R01HS27363). The funding sources had no role in the study design, data collection, data analysis, data interpretation, writing of the report, or the decision to submit for publication. The authors would like to thank Isla Kuhn, Reader Services Librarian, University of Cambridge Medical Library, for her help in developing the search strategy.Peer reviewedPublisher PD

    Artificial Intelligence Techniques That May Be Applied to Primary Care Data to Facilitate Earlier Diagnosis of Cancer: Systematic Review.

    Get PDF
    BACKGROUND: More than 17 million people worldwide, including 360,000 people in the United Kingdom, were diagnosed with cancer in 2018. Cancer prognosis and disease burden are highly dependent on the disease stage at diagnosis. Most people diagnosed with cancer first present in primary care settings, where improved assessment of the (often vague) presenting symptoms of cancer could lead to earlier detection and improved outcomes for patients. There is accumulating evidence that artificial intelligence (AI) can assist clinicians in making better clinical decisions in some areas of health care. OBJECTIVE: This study aimed to systematically review AI techniques that may facilitate earlier diagnosis of cancer and could be applied to primary care electronic health record (EHR) data. The quality of the evidence, the phase of development the AI techniques have reached, the gaps that exist in the evidence, and the potential for use in primary care were evaluated. METHODS: We searched MEDLINE, Embase, SCOPUS, and Web of Science databases from January 01, 2000, to June 11, 2019, and included all studies providing evidence for the accuracy or effectiveness of applying AI techniques for the early detection of cancer, which may be applicable to primary care EHRs. We included all study designs in all settings and languages. These searches were extended through a scoping review of AI-based commercial technologies. The main outcomes assessed were measures of diagnostic accuracy for cancer. RESULTS: We identified 10,456 studies; 16 studies met the inclusion criteria, representing the data of 3,862,910 patients. A total of 13 studies described the initial development and testing of AI algorithms, and 3 studies described the validation of an AI algorithm in independent data sets. One study was based on prospectively collected data; only 3 studies were based on primary care data. We found no data on implementation barriers or cost-effectiveness. Risk of bias assessment highlighted a wide range of study quality. The additional scoping review of commercial AI technologies identified 21 technologies, only 1 meeting our inclusion criteria. Meta-analysis was not undertaken because of the heterogeneity of AI modalities, data set characteristics, and outcome measures. CONCLUSIONS: AI techniques have been applied to EHR-type data to facilitate early diagnosis of cancer, but their use in primary care settings is still at an early stage of maturity. Further evidence is needed on their performance using primary care data, implementation barriers, and cost-effectiveness before widespread adoption into routine primary care clinical practice can be recommended.CRU

    Utilizing artificial intelligence in perioperative patient flow:systematic literature review

    Get PDF
    Abstract. The purpose of this thesis was to map the existing landscape of artificial intelligence (AI) applications used in secondary healthcare, with a focus on perioperative care. The goal was to find out what systems have been developed, and how capable they are at controlling perioperative patient flow. The review was guided by the following research question: How is AI currently utilized in patient flow management in the context of perioperative care? This systematic literature review examined the current evidence regarding the use of AI in perioperative patient flow. A comprehensive search was conducted in four databases, resulting in 33 articles meeting the inclusion criteria. Findings demonstrated that AI technologies, such as machine learning (ML) algorithms and predictive analytics tools, have shown somewhat promising outcomes in optimizing perioperative patient flow. Specifically, AI systems have proven effective in predicting surgical case durations, assessing risks, planning treatments, supporting diagnosis, improving bed utilization, reducing cancellations and delays, and enhancing communication and collaboration among healthcare providers. However, several challenges were identified, including the need for accurate and reliable data sources, ethical considerations, and the potential for biased algorithms. Further research is needed to validate and optimize the application of AI in perioperative patient flow. The contribution of this thesis is summarizing the current state of the characteristics of AI application in perioperative patient flow. This systematic literature review provides information about the features of perioperative patient flow and the clinical tasks of AI applications previously identified

    Machine Learning in Colorectal Cancer Risk Prediction from Routinely Collected Data: A Review.

    Get PDF
    The inclusion of machine-learning-derived models in systematic reviews of risk prediction models for colorectal cancer is rare. Whilst such reviews have highlighted methodological issues and limited performance of the models included, it is unclear why machine-learning-derived models are absent and whether such models suffer similar methodological problems. This scoping review aims to identify machine-learning models, assess their methodology, and compare their performance with that found in previous reviews. A literature search of four databases was performed for colorectal cancer prediction and prognosis model publications that included at least one machine-learning model. A total of 14 publications were identified for inclusion in the scoping review. Data was extracted using an adapted CHARM checklist against which the models were benchmarked. The review found similar methodological problems with machine-learning models to that observed in systematic reviews for non-machine-learning models, although model performance was better. The inclusion of machine-learning models in systematic reviews is required, as they offer improved performance despite similar methodological omissions; however, to achieve this the methodological issues that affect many prediction models need to be addressed

    Clinical text data in machine learning: Systematic review

    Get PDF
    Background: Clinical narratives represent the main form of communication within healthcare providing a personalized account of patient history and assessments, offering rich information for clinical decision making. Natural language processing (NLP) has repeatedly demonstrated its feasibility to unlock evidence buried in clinical narratives. Machine learning can facilitate rapid development of NLP tools by leveraging large amounts of text data. Objective: The main aim of this study is to provide systematic evidence on the properties of text data used to train machine learning approaches to clinical NLP. We also investigate the types of NLP tasks that have been supported by machine learning and how they can be applied in clinical practice. Methods: Our methodology was based on the guidelines for performing systematic reviews. In August 2018, we used PubMed, a multi-faceted interface, to perform a literature search against MEDLINE. We identified a total of 110 relevant studies and extracted information about the text data used to support machine learning, the NLP tasks supported and their clinical applications. The data properties considered included their size, provenance, collection methods, annotation and any relevant statistics. Results: The vast majority of datasets used to train machine learning models included only hundreds or thousands of documents. Only 10 studies used tens of thousands of documents with a handful of studies utilizing more. Relatively small datasets were utilized for training even when much larger datasets were available. The main reason for such poor data utilization is the annotation bottleneck faced by supervised machine learning algorithms. Active learning was explored to iteratively sample a subset of data for manual annotation as a strategy for minimizing the annotation effort while maximizing predictive performance of the model. Supervised learning was successfully used where clinical codes integrated with free text notes into electronic health records were utilized as class labels. Similarly, distant supervision was used to utilize an existing knowledge base to automatically annotate raw text. Where manual annotation was unavoidable, crowdsourcing was explored, but it remains unsuitable due to sensitive nature of data considered. Beside the small volume, training data were typically sourced from a small number of institutions, thus offering no hard evidence about the transferability of machine learning models. The vast majority of studies focused on the task of text classification. Most commonly, the classification results were used to support phenotyping, prognosis, care improvement, resource management and surveillance. Conclusions: We identified the data annotation bottleneck as one of the key obstacles to machine learning approaches in clinical NLP. Active learning and distant supervision were explored as a way of saving the annotation efforts. Future research in this field would benefit from alternatives such as data augmentation and transfer learning, or unsupervised learning, which does not require data annotation

    Utilizing Data Mining Techniques and Ensemble Learning to Predict Development of Surgical Site Infections in Gynecologic Cancer Patients

    Get PDF
    Surgical site infections are costly to both patients and hospitals, increase patient mortality, and are the most common form of a hospital acquired infection. Gynecological cancer surgery patients are already at higher risk of developing an infection due to the suppression of their immune system. This research leverages popular data mining techniques to create a prediction model to identify high risk patients. Implemented techniques include logistic regression, naive Bayes, recursive partitioning and regression trees, random forest, feed forward neural network, k-nearest neighbor, and support vector machines with linear kernel. Weighted stacked generalization was implemented to improve upon the individual base level model’s performance. The chosen meta level classifiers were support vector machines with linear kernel, logistic regression, and k-nearest neighbor. The result is a model that identifies high-risk patients immediately following a surgical procedure with an AUC of 0.6864, accuracy of 0.6744, sensitivity of 0.7, and specificity of 0.6728
    • …
    corecore