770 research outputs found

    A Survey on Dynamic Spectrum Access Techniques in Cognitive Radio Networks

    Get PDF
    The idea of Cognitive Radio (CR) is to share the spectrum between a user called primary, and a user called secondary. Dynamic Spectrum Access (DSA) is a new spectrum sharing paradigm in cognitive radio that allows secondary users to access the abundant spectrum holes in the licensed spectrum bands. DSA is an auspicious technology to alleviate the spectrum scarcity problem and increase spectrum utilization. While DSA has attracted many research efforts recently, in this paper, a survey of spectrum access techniques using cooperation and competition to solve the problem of spectrum allocation in cognitive radio networks is presented

    Application of reinforcement learning for security enhancement in cognitive radio networks

    Get PDF
    Cognitive radio network (CRN) enables unlicensed users (or secondary users, SUs) to sense for and opportunistically operate in underutilized licensed channels, which are owned by the licensed users (or primary users, PUs). Cognitive radio network (CRN) has been regarded as the next-generation wireless network centered on the application of artificial intelligence, which helps the SUs to learn about, as well as to adaptively and dynamically reconfigure its operating parameters, including the sensing and transmission channels, for network performance enhancement. This motivates the use of artificial intelligence to enhance security schemes for CRNs. Provisioning security in CRNs is challenging since existing techniques, such as entity authentication, are not feasible in the dynamic environment that CRN presents since they require pre-registration. In addition these techniques cannot prevent an authenticated node from acting maliciously. In this article, we advocate the use of reinforcement learning (RL) to achieve optimal or near-optimal solutions for security enhancement through the detection of various malicious nodes and their attacks in CRNs. RL, which is an artificial intelligence technique, has the ability to learn new attacks and to detect previously learned ones. RL has been perceived as a promising approach to enhance the overall security aspect of CRNs. RL, which has been applied to address the dynamic aspect of security schemes in other wireless networks, such as wireless sensor networks and wireless mesh networks can be leveraged to design security schemes in CRNs. We believe that these RL solutions will complement and enhance existing security solutions applied to CRN To the best of our knowledge, this is the first survey article that focuses on the use of RL-based techniques for security enhancement in CRNs

    Neighborhood Cognition Consistent Multi-Agent Reinforcement Learning

    Full text link
    Social psychology and real experiences show that cognitive consistency plays an important role to keep human society in order: if people have a more consistent cognition about their environments, they are more likely to achieve better cooperation. Meanwhile, only cognitive consistency within a neighborhood matters because humans only interact directly with their neighbors. Inspired by these observations, we take the first step to introduce \emph{neighborhood cognitive consistency} (NCC) into multi-agent reinforcement learning (MARL). Our NCC design is quite general and can be easily combined with existing MARL methods. As examples, we propose neighborhood cognition consistent deep Q-learning and Actor-Critic to facilitate large-scale multi-agent cooperations. Extensive experiments on several challenging tasks (i.e., packet routing, wifi configuration, and Google football player control) justify the superior performance of our methods compared with state-of-the-art MARL approaches.Comment: Accepted by AAAI2020 with oral presentation (https://aaai.org/Conferences/AAAI-20/wp-content/uploads/2020/01/AAAI-20-Accepted-Paper-List.pdf). Since AAAI2020 has started, I have the right to distribute this paper on arXi
    corecore