1,603 research outputs found

    Efficient Proactive Caching for Supporting Seamless Mobility

    Full text link
    We present a distributed proactive caching approach that exploits user mobility information to decide where to proactively cache data to support seamless mobility, while efficiently utilizing cache storage using a congestion pricing scheme. The proposed approach is applicable to the case where objects have different sizes and to a two-level cache hierarchy, for both of which the proactive caching problem is hard. Additionally, our modeling framework considers the case where the delay is independent of the requested data object size and the case where the delay is a function of the object size. Our evaluation results show how various system parameters influence the delay gains of the proposed approach, which achieves robust and good performance relative to an oracle and an optimal scheme for a flat cache structure.Comment: 10 pages, 9 figure

    Distributed Selfish Coaching

    Full text link
    Although cooperation generally increases the amount of resources available to a community of nodes, thus improving individual and collective performance, it also allows for the appearance of potential mistreatment problems through the exposition of one node's resources to others. We study such concerns by considering a group of independent, rational, self-aware nodes that cooperate using on-line caching algorithms, where the exposed resource is the storage at each node. Motivated by content networking applications -- including web caching, CDNs, and P2P -- this paper extends our previous work on the on-line version of the problem, which was conducted under a game-theoretic framework, and limited to object replication. We identify and investigate two causes of mistreatment: (1) cache state interactions (due to the cooperative servicing of requests) and (2) the adoption of a common scheme for cache management policies. Using analytic models, numerical solutions of these models, as well as simulation experiments, we show that on-line cooperation schemes using caching are fairly robust to mistreatment caused by state interactions. To appear in a substantial manner, the interaction through the exchange of miss-streams has to be very intense, making it feasible for the mistreated nodes to detect and react to exploitation. This robustness ceases to exist when nodes fetch and store objects in response to remote requests, i.e., when they operate as Level-2 caches (or proxies) for other nodes. Regarding mistreatment due to a common scheme, we show that this can easily take place when the "outlier" characteristics of some of the nodes get overlooked. This finding underscores the importance of allowing cooperative caching nodes the flexibility of choosing from a diverse set of schemes to fit the peculiarities of individual nodes. To that end, we outline an emulation-based framework for the development of mistreatment-resilient distributed selfish caching schemes. Our framework utilizes a simple control-theoretic approach to dynamically parameterize the cache management scheme. We show performance evaluation results that quantify the benefits from instantiating such a framework, which could be substantial under skewed demand profiles.National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 0202067); EU IST (CASCADAS and E-NEXT); Marie Curie Outgoing International Fellowship of the EU (MOIF-CT-2005-007230

    Building Internet caching systems for streaming media delivery

    Get PDF
    The proxy has been widely and successfully used to cache the static Web objects fetched by a client so that the subsequent clients requesting the same Web objects can be served directly from the proxy instead of other sources faraway, thus reducing the server\u27s load, the network traffic and the client response time. However, with the dramatic increase of streaming media objects emerging on the Internet, the existing proxy cannot efficiently deliver them due to their large sizes and client real time requirements.;In this dissertation, we design, implement, and evaluate cost-effective and high performance proxy-based Internet caching systems for streaming media delivery. Addressing the conflicting performance objectives for streaming media delivery, we first propose an efficient segment-based streaming media proxy system model. This model has guided us to design a practical streaming proxy, called Hyper-Proxy, aiming at delivering the streaming media data to clients with minimum playback jitter and a small startup latency, while achieving high caching performance. Second, we have implemented Hyper-Proxy by leveraging the existing Internet infrastructure. Hyper-Proxy enables the streaming service on the common Web servers. The evaluation of Hyper-Proxy on the global Internet environment and the local network environment shows it can provide satisfying streaming performance to clients while maintaining a good cache performance. Finally, to further improve the streaming delivery efficiency, we propose a group of the Shared Running Buffers (SRB) based proxy caching techniques to effectively utilize proxy\u27s memory. SRB algorithms can significantly reduce the media server/proxy\u27s load and network traffic and relieve the bottlenecks of the disk bandwidth and the network bandwidth.;The contributions of this dissertation are threefold: (1) we have studied several critical performance trade-offs and provided insights into Internet media content caching and delivery. Our understanding further leads us to establish an effective streaming system optimization model; (2) we have designed and evaluated several efficient algorithms to support Internet streaming content delivery, including segment caching, segment prefetching, and memory locality exploitation for streaming; (3) having addressed several system challenges, we have successfully implemented a real streaming proxy system and deployed it in a large industrial enterprise

    A Guide to Distributed Digital Preservation

    Get PDF
    This volume is devoted to the broad topic of distributed digital preservation, a still-emerging field of practice for the cultural memory arena. Replication and distribution hold out the promise of indefinite preservation of materials without degradation, but establishing effective organizational and technical processes to enable this form of digital preservation is daunting. Institutions need practical examples of how this task can be accomplished in manageable, low-cost ways."--P. [4] of cove

    An O(nh) algorithm for dual-server coordinated en-route caching in tree networks

    Get PDF
    Dual-server coordinated en-route caching is important because of its basic features as multi-server en-route caching. In this paper, multi-server coordinated en-route caching is formulated as an optimization problem of minimizing total access cost, including transmission cost for all access demands and caching cost of all caches. We first discuss an algorithm for single-server en-route caching in tree networks and then show that this is a special case of another algorithm for dual-server en-route caching in tree networks whose time complexity is O(nh).Shihong Xu, Hong She

    Security, Performance and Energy Trade-offs of Hardware-assisted Memory Protection Mechanisms

    Full text link
    The deployment of large-scale distributed systems, e.g., publish-subscribe platforms, that operate over sensitive data using the infrastructure of public cloud providers, is nowadays heavily hindered by the surging lack of trust toward the cloud operators. Although purely software-based solutions exist to protect the confidentiality of data and the processing itself, such as homomorphic encryption schemes, their performance is far from being practical under real-world workloads. The performance trade-offs of two novel hardware-assisted memory protection mechanisms, namely AMD SEV and Intel SGX - currently available on the market to tackle this problem, are described in this practical experience. Specifically, we implement and evaluate a publish/subscribe use-case and evaluate the impact of the memory protection mechanisms and the resulting performance. This paper reports on the experience gained while building this system, in particular when having to cope with the technical limitations imposed by SEV and SGX. Several trade-offs that provide valuable insights in terms of latency, throughput, processing time and energy requirements are exhibited by means of micro- and macro-benchmarks.Comment: European Commission Project: LEGaTO - Low Energy Toolset for Heterogeneous Computing (EC-H2020-780681

    Dynamic organization schemes for cooperative proxy caching

    Get PDF
    In a generic cooperative caching architecture, web proxies form a mesh network. When a proxy cannot satisfy a request, it forwards the request to the other nodes of the mesh. Since a local cache cannot fulfill the majority of the arriving requests (typical values of the local hit ratio are about 30-50%), the volume of queries diverted to neighboring nodes can substantially grow and may consume considerable amount of system resources. A proxy does not need to cooperate with every node of the mesh due to the following reasons: (i) the traffic characteristics may be highly diverse; (ii) the contents of some nodes may extensively overlap; (iii) the inter-node distance might be too large. Furthermore, organizing N proxies in a mesh topology introduces scalability problems, since the number of queries is of the order of N/sup 2/. Therefore, restricting the number of neighbors for each proxy to k < N - 1 will likely lead to a balanced trade-off between query overhead and hit ratio, provided cooperation is done among useful neighbors. For a number of reasons the selection of useful neighbors is not efficient. An obvious reason is that web access patterns change dynamically. Furthermore, availability of proxies is not always globally known. This paper proposes a set of algorithms that enable proxies to independently explore the network and choose the k most beneficial (according to local criteria) neighbors in a dynamic fashion. The simulation experiments illustrate that the proposed dynamic neighbor reconfiguration schemes significantly reduce the overhead incurred by the mesh topology while yielding higher hit ratios compared to the static approach.published_or_final_versio

    A cache framework for nomadic clients of web services

    Get PDF
    This research explores the problems associated with caching of SOAP Web Service request/response pairs, and presents a domain independent framework enabling transparent caching of Web Service requests for mobile clients. The framework intercepts method calls intended for the web service and proceeds by buffering and caching of the outgoing method call and the inbound responses. This enables a mobile application to seamlessly use Web Services by masking fluctuations in network conditions. This framework addresses two main issues, firstly how to enrich the WS standards to enable caching and secondly how to maintain consistency for state dependent Web Service request/response pairs
    • …
    corecore