11,165 research outputs found

    Information Gathering with Peers: Submodular Optimization with Peer-Prediction Constraints

    Full text link
    We study a problem of optimal information gathering from multiple data providers that need to be incentivized to provide accurate information. This problem arises in many real world applications that rely on crowdsourced data sets, but where the process of obtaining data is costly. A notable example of such a scenario is crowd sensing. To this end, we formulate the problem of optimal information gathering as maximization of a submodular function under a budget constraint, where the budget represents the total expected payment to data providers. Contrary to the existing approaches, we base our payments on incentives for accuracy and truthfulness, in particular, {\em peer-prediction} methods that score each of the selected data providers against its best peer, while ensuring that the minimum expected payment is above a given threshold. We first show that the problem at hand is hard to approximate within a constant factor that is not dependent on the properties of the payment function. However, for given topological and analytical properties of the instance, we construct two greedy algorithms, respectively called PPCGreedy and PPCGreedyIter, and establish theoretical bounds on their performance w.r.t. the optimal solution. Finally, we evaluate our methods using a realistic crowd sensing testbed.Comment: Longer version of AAAI'18 pape

    Differentially Private Decomposable Submodular Maximization

    Full text link
    We study the problem of differentially private constrained maximization of decomposable submodular functions. A submodular function is decomposable if it takes the form of a sum of submodular functions. The special case of maximizing a monotone, decomposable submodular function under cardinality constraints is known as the Combinatorial Public Projects (CPP) problem [Papadimitriou et al., 2008]. Previous work by Gupta et al. [2010] gave a differentially private algorithm for the CPP problem. We extend this work by designing differentially private algorithms for both monotone and non-monotone decomposable submodular maximization under general matroid constraints, with competitive utility guarantees. We complement our theoretical bounds with experiments demonstrating empirical performance, which improves over the differentially private algorithms for the general case of submodular maximization and is close to the performance of non-private algorithms
    • …
    corecore