640 research outputs found

    Multi-Antenna Vision-and-Inertial-Aided CDGNSS for Micro Aerial Vehicle Pose Estimation

    Get PDF
    A system is presented for multi-antenna carrier phase differential GNSS (CDGNSS)-based pose (position and orientation) estimation aided by monocular visual measurements and a smartphone-grade inertial sensor. The system is designed for micro aerial vehicles, but can be applied generally for low-cost, lightweight, high-accuracy, geo-referenced pose estimation. Visual and inertial measurements enable robust operation despite GNSS degradation by constraining uncertainty in the dynamics propagation, which improves fixed-integer CDGNSS availability and reliability in areas with limited sky visibility. No prior work has demonstrated an increased CDGNSS integer fixing rate when incorporating visual measurements with smartphone-grade inertial sensing. A central pose estimation filter receives measurements from separate CDGNSS position and attitude estimators, visual feature measurements based on the ROVIO measurement model, and inertial measurements. The filter's pose estimates are fed back as a prior for CDGNSS integer fixing. A performance analysis under both simulated and real-world GNSS degradation shows that visual measurements greatly increase the availability and accuracy of low-cost inertial-aided CDGNSS pose estimation.Aerospace Engineering and Engineering Mechanic

    An Overview about Emerging Technologies of Autonomous Driving

    Full text link
    Since DARPA started Grand Challenges in 2004 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. This paper gives an overview about technical aspects of autonomous driving technologies and open problems. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Especially we elaborate on all these issues in a framework of data closed loop, a popular platform to solve the long tailed autonomous driving problems

    Region of Interest Generation for Pedestrian Detection using Stereo Vision

    Get PDF
    Pedestrian detection is an active research area in the field of computer vision. The sliding window paradigm is usually followed to extract all possible detector windows, however, it is very time consuming. Subsequently, stereo vision using a pair of camera is preferred to reduce the search space that includes the depth information. Disparity map generation using feature correspondence is an integral part and a prior task to depth estimation. In our work, we apply the ORB features to fasten the feature correspondence process. Once the ROI generation phase is over, the extracted detector window is represented by low level histogram of oriented gradient (HOG) features. Subsequently, Linear Support Vector Machine (SVM) is applied to classify them as either pedestrian or non-pedestrian. The experimental results reveal that ORB driven depth estimation is at least seven times faster than the SURF descriptor and ten times faster than the SIFT descriptor

    NLOS Dies Twice: Challenges and Solutions of V2X for Cooperative Perception

    Full text link
    Multi-agent multi-lidar sensor fusion between connected vehicles for cooperative perception has recently been recognized as the best technique for minimizing the blind zone of individual vehicular perception systems and further enhancing the overall safety of autonomous driving systems. This technique relies heavily on the reliability and availability of vehicle-to-everything (V2X) communication. In practical sensor fusion application scenarios, the non-line-of-sight (NLOS) issue causes blind zones for not only the perception system but also V2X direct communication. To counteract underlying communication issues, we introduce an abstract perception matrix matching method for quick sensor fusion matching procedures and mobility-height hybrid relay determination procedures, proactively improving the efficiency and performance of V2X communication to serve the upper layer application fusion requirements. To demonstrate the effectiveness of our solution, we design a new simulation framework to consider autonomous driving, sensor fusion and V2X communication in general, paving the way for end-to-end performance evaluation and further solution derivation.Comment: Submission to IEEE Vehicular Technology Magazin

    Infrared based monocular relative navigation for active debris removal

    No full text
    In space, visual based relative navigation systems suffer from the harsh illumination conditions of the target (e.g. eclipse conditions, solar glare, etc.). In current Rendezvous and Docking (RvD) missions, most of these issues are addressed by advanced mission planning techniques (e.g strict manoeuvre timings). However, such planning would not always be feasible for Active Debris Removal (ADR) missions which have more unknowns. Fortunately, thermal infrared technology can operate under any lighting conditions and therefore has the potential to be exploited in the ADR scenario. In this context, this study investigates the benefits and the challenges of infrared based relative navigation. The infrared environment of ADR is very much different to that of terrestrial applications. This study proposes a methodology of modelling this environment in a computationally cost effective way to create a simulation environment in which the navigation solution can be tested. Through an intelligent classification of possible target surface coatings, the study is generalised to simulate the thermal environment of space debris in different orbit profiles. Through modelling various scenarios, the study also discusses the possible challenges of the infrared technology. In laboratory conditions, providing the thermal-vacuum environment of ADR, these theoretical findings were replicated. By use of this novel space debris set-up, the study investigates the behaviour of infrared cues extracted by different techniques and identifies the issue of short-lifespan features in the ADR scenarios. Based on these findings, the study suggests two different relative navigation methods based on the degree of target cooperativeness: partially cooperative targets, and uncooperative targets. Both algorithms provide the navigation solution with respect to an online reconstruction of the target. The method for partially cooperative targets provides a solution for smooth trajectories by exploiting the subsequent image tracks of features extracted from the first frame. The second algorithm is for uncooperative targets and exploits the target motion (e.g. tumbling) by formulating the problem in terms of a static target and a moving map (i.e. target structure) within a filtering framework. The optical flow information is related to the target motion derivatives and the target structure. A novel technique that uses the quality of the infrared cues to improve the algorithm performance is introduced. The problem of short measurement duration due to target tumbling motion is addressed by an innovative smart initialisation procedure. Both navigation solutions were tested in a number of different scenarios by using computer simulations and a specific laboratory set-up with real infrared camera. It is shown that these methods can perform well as the infrared-based navigation solutions using monocular cameras where knowledge relating to the infrared appearance of the target is limited

    On Deep Learning Enhanced Multi-Sensor Odometry and Depth Estimation

    Get PDF
    In this thesis, we systematically study the integration of deep learning and simultaneous localization and mapping (SLAM) and advance the research frontier by making the following contributions. (1) We devise a unified information theoretic framework for end-to-end learning methods aimed at odometry estimation, which not only improves the accuracy empirically, but provides an elegant theoretical tool for performance evaluation and understanding in information theoretical language. (2) For the integration of learning and geometry, we put our research focus on the scale ambiguity problem in monocular SLAM and odometry systems. To this end, we first propose VRVO (Virtual-to-Real Visual Odometry) which retrieves the absolute scale from virtual data, adapts the learnt features between real and virtual domains, and establishes a mutual reinforcement pipeline between learning and optimization to further leverage the complementary information. The depth maps are used to carry the scale information, which are then integrated with classical SLAM systems by providing initialization values and dense virtual stereo objectives. (3) Since modern sensor-suits usually contain multiple sensors including camera and IMU, we further propose DynaDepth, an unsupervised monocular depth estimation method that integrates IMU motion dynamics. A differentiable camera-centric extended Kalman filter (EKF) framework is derived to exploit the complementary information from both camera and IMU sensors, which also provides an uncertainty measure for the ego-motion predictions. The proposed depth network not only learns the absolute scale, but exhibits better generalization ability and robustness against vision degradation. And the resulting depth predictions can be integrated into classical SLAM systems in the similar way as VRVO to achieve a scale-aware monocular SLAM system during inference

    Synthesis and Validation of Vision Based Spacecraft Navigation

    Get PDF

    Vision-Based Bridge Deformation Monitoring

    Get PDF
    This is the final version of the article. Available from Frontiers Media via the DOI in this record.Optics-based tracking of civil structures is not new, due to historical application in surveying, but automated applications capable of tracking at rates that capture dynamic effects are now a hot research topic in structural health monitoring. Recent innovations show promise of true non-contacting monitoring capability avoiding the need for physically attached sensor arrays. The paper reviews recent experience using the Imetrum Dynamic Monitoring Station (DMS) commercial optics-based tracking system on Humber Bridge and Tamar Bridge, aiming to show both the potential and limitations. In particular, the paper focuses on the challenges to field application of such a system resulting from camera instability, nature of the target (artificial or structural feature), and illumination. The paper ends with evaluation of a non-proprietary system using a consumer-grade camera for cable vibration monitoring to emphasize the potential for lower cost systems where if performance specifications can be relaxed.The GPS system at Humber was created by Dr. Ki Koo with support from EPSRC grant EP/F035403/1. DH was supported via the Marie Curie Fellowship programme and as such the research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 330195
    corecore