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Abstract

Simultaneous localization and mapping (SLAM) and odometry have been

established as a longstanding research problem, which aims at providing real-

time vehicle movement and three-dimensional environment reconstruction by

using information from various on-board sensors like camera, LiDAR, and IMU,

etc. SLAM and odometry have served as the fundamental components of nu-

merous real-world applications, including autonomous driving, domestic or in-

dustrial robots, augmented reality (AR) and virtual reality (VR), where there

exists extensive demand for real-time device position and orientation, and de-

tailed environmental information. Classical SLAM and odometry systems resort

to the well-established multiview geometric constraints and formulate this prob-

lem as either a filtering process or an optimization problem. However, due to

the complexity of the real-world, the underlying assumptions behind the geo-

metric constraints could be easily violated, especially when there exist dynamic

objects, non-rigid environments, texture-less areas, and illumination changes in

the scene. As a result, it is still a long way to go to develop accurate and robust

SLAM and odometry systems that can properly work under various conditions.

On the other hand, deep learning has transformed the research of computer

science, especially computer vision and natural language processing, in recent

years. Its success in numerous applications supports that given enough data and

properly designed training objectives, deep neural networks are able to learn the

mapping between the input data and the desired outputs.The potential use of

deep learning in SLAM research has also been explored, which can be catego-

rized into two types of paradigms, i.e., the end-to-end learning framework and

the integration of learning and classical geometric systems.

x



ABSTRACT xi

In this thesis, we systematically study both paradigms and advance the re-

search frontier by making the following contributions. (1) We devise a uni-

fied information theoretic framework for end-to-end learning methods aimed at

odometry estimation. By introducing a variational information bottleneck ob-

jective to eliminate pose-irrelevant information from the latent representation,

the proposed framework not only improves the accuracy empirically, but pro-

vides an elegant theoretical tool for performance evaluation and understand-

ing in information theoretical language. (2) For the integration of learning

and geometry, we put our research focus on the scale ambiguity problem in

monocular SLAM and odometry systems. To this end, we first propose VRVO

(Virtual-to-Real Visual Odometry) which retrieves the absolute scale from vir-

tual data, adapts the learnt features between real and virtual domains, and es-

tablishes a mutual reinforcement pipeline between learning and optimization to

further leverage the complementary information. The depth maps are used to

carry the scale information, which are then integrated with classical SLAM sys-

tems by providing initialization values and dense virtual stereo objectives. (3)

Since modern sensor-suits usually contain multiple sensors including camera

and IMU, we further propose DynaDepth, an unsupervised monocular depth es-

timation method that integrates IMU motion dynamics. A differentiable camera-

centric extended Kalman filter (EKF) framework is derived to exploit the com-

plementary information from both camera and IMU sensors, which also pro-

vides an uncertainty measure for the ego-motion predictions. The proposed

depth network not only learns the absolute scale, but exhibits better generaliza-

tion ability and robustness against vision degradation. And the resulting depth

predictions can be integrated into classical SLAM systems in the similar way as

VRVO to achieve a scale-aware monocular SLAM system during inference.
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CHAPTER 1

Introduction

Localization and environment reconstruction have been a long-standing research

problem in the computer vision and robotics community (Durrant-Whyte and

Bailey, 2006; Aulinas et al., 2008; Fuentes-Pacheco et al., 2015; Grisetti et al.,

2010; Cadena et al., 2016; Barfoot, 2017). To interact with the real-world and

perform various autonomous tasks, an intelligent agent should be able to deter-

mine where it is and gather the information of the surrounding environments

like human beings. The motion of an agent is usually represented by a six

degree-of-freedom (DOF) vector that includes translation and rotation with re-

spect to a certain reference frame, while the environmental information can be

perceived from various aspects. In its basic form, the environment can be rep-

resented by point clouds defined by their coordinates or dense depth maps from

different view points should we know the poses of the corresponding camera

frames (Davison et al., 2007; Mur-Artal et al., 2015; Engel et al., 2017). One

can also resort to high-level structural and semantic representations for the en-

vironment, such as meshes (Bloesch et al., 2019), planes (Yang and Scherer,

2019b), cubes (Yang and Scherer, 2019a), and semantic objects (Civera et al.,

2011; Salas-Moreno et al., 2013), to achieve better compactness and complex-

ity to account for real-world dynamics. However, such practices usually present

more challenges in terms of computation and algorithms.

1
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This thesis focuses on the most fundamental formulation of this problem, i.e.,

estimating the agent motion and the point depths or coordinates in the environ-

ment from the data collected by certain onboard sensors, which provide essen-

tial information for many intelligent tasks such as path planning (Mac et al.,

2016), obstacle avoidance (Kunchev et al., 2006), object manipulation (Rosen-

baum et al., 2012), and device tracking (Reitmayr et al., 2010), and have found

applications in numerous scenarios including autonomous driving, domestic

robots (Geiger et al., 2013), unmanned aerial vehicles (UAV) (Burri et al., 2016),

and augmented reality (AR) and virtual reality (VR) devices (Reitmayr et al.,

2010). Among all sensors that can be equipped onboard to estimate the robot

states, camera, LiDAR, and inertial measurement unit (IMU) present three most

commonly used ones. Being able to directly measure the distance of reflec-

tive surfaces and provide accurate point depths, LiDAR-based methods achieve

the dominant performance with respect to both localization and environment

reconstruction (Zhang and Singh, 2014; Shan and Englot, 2018). Neverthe-

less, the high cost of LiDAR limits its practical use in many applications. In

contrast, camera provides a cost-efficient and widely-deployed sensor for real-

world applications, and has drawn extensive research attention in the last two

decades (Davison et al., 2007; Mur-Artal et al., 2015; Engel et al., 2017). Due

to the intrinsic complexity of images, it is more challenging to extract informa-

tive features and recover the robot states from camera data. On the other hand,

the richness of image information enables us to incorporate other computer vi-

sion tasks like object detection and segmentation into localization and map-

ping (Civera et al., 2011; Salas-Moreno et al., 2013), and allows for integrated

systems that can take advantage of both. IMU presents another commonly-

deployed and low-cost sensor which gives the angular velocity and acceleration

measurements of the vehicle. By itself IMU is inappropriate for long-term mo-

tion estimation since the integration of its measurements usually drift quickly

and can only guarantee short-term accuracies. However, it has been proven that
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IMU can serve as an important auxiliary sensor for camera and LiDAR and im-

prove the performance of the overall system (Mourikis and Roumeliotis, 2007;

Leutenegger et al., 2015; Qin et al., 2018). Without loss of generality we put

our main focus in this thesis on vision-based localization and mapping, while

we also explore the use of IMU and LiDAR in our works.

Researchers have resorted to the knowledge of multiview geometry to introduce

solvable geometric constraints and recover the desired robot states (Hartley and

Zisserman, 2003; Barfoot, 2017). Since the multiview geometric constraints

usually involve both the relative motion of the sensors and the 3D positions or

depths of key points or geometric structures in the environment, simultaneous

localization and mapping (SLAM) which jointly estimate the motion and the en-

vironment variables has become the dominant technical protocol in the last two

decades and has achieved great success on datasets covering autonomous driv-

ing (Geiger et al., 2013), UAV (Burri et al., 2016), and handheld devices (Sturm

et al., 2012). As a key component of visual SLAM, visual odometry (VO) recov-

ers relative camera motions from consecutive images without a pre-built map,

which is also known as the front-end of visual SLAM systems (Nistér et al.,

2004; Scaramuzza and Fraundorfer, 2011; Fraundorfer and Scaramuzza, 2012).

Typical SLAM systems also include a backend that performs global optimiza-

tion and loop closure to enhance the overall accuracy and correct long-term

drift (Fuentes-Pacheco et al., 2015; Cadena et al., 2016; Taketomi et al., 2017).

Despite of the success of current geometric SLAM and odometry methods such

as ORB-SLAM (Mur-Artal et al., 2015), SVO (Forster et al., 2014), and DSO (En-

gel et al., 2017), however, due to the complexity of real-world, the underlying

assumptions of the utilized multiview geometric constraints can be easily vio-

lated in practice. For instance, dynamic objects, non-rigid environment, textless

or illumination changing areas, pure rotation and extreme weathers all pose non-

trivial challenges for achieving a robust and accurate SLAM system in those

corner cases. On the other hand, with the emerging large datasets and properly
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designed training objectives, whether supervised or self-supervised, deep neural

networks have shown great potential in learning the mapping between input data

and desired outputs (Deng et al., 2014; LeCun et al., 2015; Schmidhuber, 2015),

and have transformed the research pattern in numerous tasks of computer vision

and natural language processing, such as object detection (Liu et al., 2020a),

segmentation (Minaee et al., 2021), and machine translation (Bahdanau et al.,

2014; Stahlberg, 2020), etc. Researchers have also explored the potential use of

deep learing in SLAM and odometry (Li et al., 2018; Sünderhauf et al., 2018;

Chen et al., 2020), however, currently there still lacks a consensus on the role

that deep learning should play in this research field, and to what extent the clas-

sical geometric pipelines should be maintained.

Current research that introduces deep learing to the regime of localization and

mapping can be categorized into two types of paradigms, i.e., the end-to-end

learning framework (Kendall et al., 2015; Wang et al., 2017; Zhou et al., 2017;

Bian et al., 2019; Xue et al., 2019) and the integration of learning and classi-

cal geometric systems (Tateno et al., 2017; Yang et al., 2018, 2020; Zhan et al.,

2020). In this thesis, we study this problem from both perspectives. Firstly, we

target at the end-to-end deep learning methods for odometry estimation and pro-

vide a theoretical framework for the black-box deep learning approach, which

is achieved by introducing an information bottleneck objective into the feature

learning process (Zhang et al., 2022a). This work not only enables the learning

of a more informative and generalizable latent feature, but provide theoretical

insights and practical guidance for end-to-end deep odometry learning.

We then explore the more finegrained integration of deep learning and classi-

cal geometric methods on how the predictions from neural networks can bene-

fit geometry-based systems while maintaining the merit of the well-established

multiple geometry constraints and the filtering or optimization protocols. We
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particularly put our focus on the scale ambiguity problem of monocular vi-

sual SLAM systems, where the absolute scale of the point depths and the cam-

era translation is unobservable solely from monocular sequences. Since point

depths generally provide much denser information than the 6-DOF pose vec-

tors, we follow the practice in DVSO (Yang et al., 2018) that uses depth maps to

carry the scale information which are then integrated with geometric systems to

resolve the scale ambiguity problem. In order to retrieve the scale information,

external data sources are usually required. In this thesis, we explore the use of

two practical types of such data, i.e. the virtual data from modern photo-realistic

simulation engines (Zhang et al., 2022c), and the data from the cost-effective

and widely-deployed IMU sensor (Zhang et al., 2022b). We first propose a

framework to learn scale-aware disparity networks from virtual data which is

then adapted to the real domain by developing a virtual-to-real domain adapta-

tion module. A mutual enhancement pipeline is also established to fully exploit

the synergy between learning and optimization. Since the key in the achieved

scale-awareness lies in the depth predictions, we then further propose a scale-

aware unsupervised monocular depth estimation framework by taking the IMU

data into account. Overall, our work in this thesis contribute to the research

comminuty by examining the potential use of deep learning in this regime and

develop novel frameworks for more robust, accurate, and generalizable SLAM

and odometry systems.

1.1 Problem Definition and Evaluation Criteria

Given observation data {o(m)
1:t }Mm=1 from M on-board sensors such as LiDAR,

camera, and IMU within the time range 1 : t, SLAM methods aim to predict

the 6-DOF camera poses T1:t for localization and the 3D coordinates {xp}Pp=1 or

depths {dp}Pp=1 of the P leveraged points or features for environmental recon-

struction. The localization task is usually accomplished by estimating the rela-

tive camera poses between image frames, which is also known as the odometry
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problem. Accordingly, evaluation of localization performance can also be con-

ducted in terms of relative motions and global positions respectively. Common

evaluation metrics for localization include (1) the absolute RMSE errors for rel-

ative translation (m) and rotation (o), (2) the RMSE drifts for translation (%) and

rotation (o/100m) averaged over a range of distances (e.g., 100m-800m in the

KITTI dataset (Geiger et al., 2013)), and (3) the absolute trajectory ATE errors

(m). On the other hand, the quality of the environmental mapping is commonly

evaluated by the accuracy of depth estimation. To this end, metrics including

(1) the linear and log RMSEs, (2) the absolute and squared relative differences,

and (3) the percertages of pixels that have depth errors under certain thresholds

have been proposed for depth evaluation (Eigen et al., 2014).

1.2 Contributions

The main contributions of the thesis are summarized as follows:

• In Chapter 2, we propose a unified information theoretical framework

for end-to-end odometry learning (Zhang et al., 2022a). We formulate

this problem as learning an informative latent feature for network pre-

dictions by introducing a variational information bottleneck objectie

function which eliminates pose-irrelevant information from the latent

feature. The proposed framework provides an elegant theoretic tool for

performane evaluation and understanding, under which we show that

the expected generalization errors are bounded by the bottleneck ob-

jective and the predictability of the latent representation. In addition,

the stochastic latent representation naturally provides an uncertainty

measure without the needs for extra structures or computations. We

empiriclly verify the effectiveness of our method on the KITTI (Geiger

et al., 2013) and the EuRoC datasets (Burri et al., 2016). The source

code of the information theoretical odometry framework is released at
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https://github.com/SenZHANG-GitHub/InfoOdometry.

• In Chapter 3, we propose VRVO, a novel framework that retrieves the

absolute scale from virtual data, adapts the learnt network into real do-

main, and integrates the scale information into classical geometric sys-

tems (Zhang et al., 2022c). A scale-aware disparity network is learnt

using both monocular real images and stereo virtual data. The domain

gap is bridged by adversarially mapping images from both domain into

a shared feature space. The scale-aware disparities are integrated into a

direct VO system by providing initialization and a virtual stereo objec-

tive. We further build a mutual reinforcement pipeline to fully exploit

the merit of both optimization and learning. The scale-awareness and

effectiveness of VRVO are demonstated on the KITTI (Geiger et al.,

2013) and the vKITTI2 datasets (Cabon et al., 2020). The source code

of VRVO is released at https://github.com/SenZHANG-GitHub/VRVO.

• In Chapter 4, we propose DynaDepth, scale-aware unsupervised monoc-

ular depth estimation method by integrating IMU motion dynamics (Zhang

et al., 2022b). We propose an IMU photometric loss and a cross-

sensor photometric consistency to provide dense supervision and abso-

lute scales. We further derive a differentiable camera-centric extended

Kalman filter (EKF) to fully exploit the complementary information

from both camera and IMU sensors. In addition, the EKF formulation

allows the learning of an ego-motion uncertainty measure. We vali-

date the effectiveness of DynaDepth on the KITTI (Geiger et al., 2013)

and the Make3D datasets (Saxena et al., 2008). The source code of

DynaDepth is released at https://github.com/SenZHANG-GitHub/ekf-

imu-depth.

https://github.com/SenZHANG-GitHub/InfoOdometry
https://github.com/SenZHANG-GitHub/VRVO
https://github.com/SenZHANG-GitHub/ekf-imu-depth
https://github.com/SenZHANG-GitHub/ekf-imu-depth
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1.3 Outline

We introduce the task of simultaneous localization and mapping (SLAM) and

odometry in this chapter. Established research practice and current challenges

are presented. We provide discussions on the transformation deep learning has

brought to SLAM and odometry and highlight our contributions to this emerging

trend of research in this field. We organize the reminder of this thesis as four

chapters, which are listed as follows:

• Chapter 2 We introduce the problem of end-to-end odometry learn-

ing and our proposed information theoretic framework (Zhang et al.,

2022a). Technical details of the variational information bottleneck and

the corresponding theoretical results in the information theoretic lan-

guage are presented. We conduct extentive experiments and ablation

studies on KITTI (Geiger et al., 2013), EuRoC (Burri et al., 2016), and

vKITTI2 (Cabon et al., 2020) to investigate various aspects of our pro-

posed method.

• Chapter 3 We introduce the scale ambiguity problem of monocular

visual SLAM systems and present VRVO which learns the scale infor-

mation from virtual data. (Zhang et al., 2022c) We give the detailed

descriptions of the domain adaptation module, the mutual reinforce-

ment pipeline, and the implementation of the virtual stereo objective.

We then present both quantitative and qualitative experiment results

on KITTI (Geiger et al., 2013) and vKITTI2 (Cabon et al., 2020) to

demonstrate the effectiveness of VRVO.

• Chapter 4 We introduce unsupervised depth estimation and present

DynaDepth, a scale-aware, robust, and generalizable unsupervied depth

estimation method by integrating IMU dynamics (Zhang et al., 2022b).
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The technical details of the proposed IMU photometric loss and the

cross-sensor photometric consistency loss are provided. The deriva-

tion and the discussions of the differntiable camera-centric extended

Kalman filter (EKF) are also given in this chapter. We perform ex-

periments on KITTI (Geiger et al., 2013) and Make3D (Saxena et al.,

2008), and examine DynaDepth from multiple perspectives.

• Chapter 5 This chapter concludes the work involved in this thesis

and provides discussions on potential future research directions.



CHAPTER 2

Information Theoretical Odometry Learning

Odometry serves as a crucial component of many robotics and vision tasks such

as navigation and virtual reality where relative camera poses are required in real

time. In this chapter, we propose a unified information theoretic framework for

learning-motivated methods aimed at odometry estimation. We formulate this

problem as optimizing a variational information bottleneck objective function,

which eliminates pose-irrelevant information from the latent representation. The

proposed framework provides an elegant tool for performance evaluation and

understanding in the information theoretical language. Specifically, we bound

the generalization errors of the deep information bottleneck framework and the

predictability of the latent representation. These provide not only a performance

guarantee but also practical guidance for model design, sample collection, and

sensor selection. Furthermore, the stochastic latent representation provides a

natural uncertainty measure without the needs for extra structures or compu-

tations. Experiments on two well-known odometry datasets demonstrate the

effectiveness of our method.

2.1 Introduction

Odometry aims to predict six degrees of freedom (6-DOF) relative vehicle poses

from onboard sensors. It is a fundamental component of a wide variety of robot-

ics and vision tasks, including simultaneous localization and mapping (SLAM),
10
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automatic navigation, and virtual reality (Durrant-Whyte and Bailey, 2006; Fuentes-

Pacheco et al., 2015; Taketomi et al., 2017; Zhang and Tao, 2020). In particular,

visual and visual-inertial odometry have attracted a lot of attention over recent

years due to the low cost and easy setup of cameras and inertial measurement

unit (IMU) sensors. The relative camera pose is recovered using geometric clues

and motion models. Classic geometric methods usually formulate the odome-

try problem as an optimization problem by incorporating well-established geo-

metric and motion constraints as the objective functions. Nevertheless, due to

the complexity and diversity of real-world environments, the explicitly modeled

constraints can hardly explain all aspects of the sensor data. Though successful

in some real-world scenarios, geometric systems fail to work when the underly-

ing assumptions behind the optimization objectives, such as static environments,

discriminative visual features, noiseless observations and brightness constancy,

are violated in the real world. Furthermore, since odometry is essentially a time-

series prediction problem, how to properly handle time dependency and envi-

ronment dynamics presents further challenges. Classic geometric methods use

filtering or bundle adjustments to take the temporal information into account,

while the implicitly implied error distributions might not hold in practice.

Recently end-to-end deep learning methods provide an alternative solution for

the odometry problem, which relieves the above-mentioned intrinsic problems

of geometric methods. Learning-based methods tackle this problem from an-

other perspective that does not explicitly model the constraints for optimization

but learns the mapping from sensor data to camera pose implicitly from large-

scale datasets (Wang et al., 2017; Clark et al., 2017; Xue et al., 2019). It has

been shown that well-trained deep networks are able to effectively capture the

inherent complexity and diversity of the training data and establish the map-

ping between visual/sequential inputs to desired targets in many computer vi-

sion tasks He et al. (2016); Xu et al. (2021); Zhang et al. (2023), thus holding

promise for addressing the limitations of geometric approaches. In addition,
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learning-based frameworks can implicitly learn calibrated representations and

require no explicit calibration procedures. For monocular visual odometry, the

absolute scale can also be recovered from training data, which instead is a non-

trivial challenge for geometric methods.

Although existing deep odometry learning methods have performed competi-

tively against their geometric counterparts, they still fail to satisfy some basic

requirements. First of all, due to the broad range of scenarios where odometry

is required, odometry systems are expected to be easily compatible with various

configurations and settings, such as multiple sensors and dynamic environments.

In addition, the common existence of data degeneration, such as from hardware

malfunctions and unexpected occlusions, requires a safe and robust system in

which a proper uncertainty measure is desirable for self-awareness of the poten-

tial anomalies and system bias. Moreover, theoretical analyses of current black

box deep odometry models, such as generalizability on unseen test data and ex-

tendibility to extra sensors, are still obscure but essential for understanding and

assessing the model performance.

Here we devise a unified odometry learning framework from an information

theoretical perspective, which well addresses the above issues. Our work is mo-

tivated by the recent successes of deep variational inference and learning theory

based on mutual information (MI). Specifically, we translate the odometry prob-

lem to optimizing an information bottleneck (IB) objective function where the

latent representation is formulated as a bottleneck between the observations and

relative camera poses. In doing so, we eliminate the pose-irrelevant informa-

tion from the latent representation to achieve better generalizability. Modeling

by MI constraints provides a flexible way to account for different aspects of

the problem and quantify their effectiveness in the information theoretical lan-

guage. This framework is also attractive in that the operations are performed on

the probabilistic distribution of the latent representation, which naturally pro-

vides an uncertainty measure for interrogating the data quality and system bias.
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More importantly, the information theoretical formulation allows us to lever-

age information theory to investigate the theoretical properties of the proposed

method. Our theoretical findings not only benefit the evaluation of the model

performance but also provide insights for subsequent research. We obtain a the-

oretical guarantee of the proposed framework by deriving an upper bound of

the expected generalization error w.r.t. the IB objective function under mild net-

work and loss function conditions. We show that the latent space dimensionality

also bounds the expected generalization error, providing a theoretical explana-

tion for the complexity-overfitting trade-off in the latent representation space.

When the test data is biased, our result shows that the growing rate of d should

not exceed that of n/log(n), where d is the latent space dimensionality, and n

is the sample size. We further quantify the usefulness of a latent representation

for relative camera pose prediction using the MI between the representation and

poses. In doing so, we prove a lower bound for this MI given extra sensors,

which reveals the conditions required for a sensor to theoretically guarantee a

performance gain. It is noteworthy that our theoretical results hold not only for

the odometry problem but also for a wider variety of problems that share the

same Markov chain assumption and the IB objective function. A connection be-

tween our information theoretical framework and geometric methods is further

established for deeper insights.

The main contributions of this chapter are:

(1) We propose information theoretical odometry learning by leveraging

the IB objective function to eliminate pose-irrelevant information from

the latent representation;

(2) We develop the theoretical performance guarantee of the proposed frame-

work by deriving upper bounds on the generalization error w.r.t. IB and

the latent space dimensionality as well as a lower bound on the MI be-

tween the latent representation and poses;
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(3) We empirically verify the effectiveness of our method on the well-

known KITTI and EuRoC datasets with two common types of sensors,

i.e., camera and IMU, and show how the intrinsic uncertainty benefits

failure detection and inference refinement.

2.2 Related Work

Deep representation for odometry learning: Leveraging deep neural net-

works to learn compact feature representation from high-dimension sensor data

has been proven effective for odometry. Kendall et al. (2015) proposed PoseNet

by using neural networks for camera relocalization, based upon which Wang

et al. (2017) introduced a recurrent module to model the temporal correlation

of features for visual odometry. Subsequently, Xue et al. (2019) further con-

sidered a memory and refinement module to address the prediction drift caused

by error accumulation. Recently, deep learning-based odometry has also been

extended to the multi-sensor configuration. Clark et al. (2017) extended the

DeepVO framework to incorporate IMU data by leveraging an extra recurrent

network for learning better feature representation. A recent study by Chen et al.

(2019) investigated more effective and robust sensor fusion via soft and hard

attention for visual-inertial odometry. Apart from end-to-end learning, there are

also trends in unsupervised learning (Zhou et al., 2017; Yin and Shi, 2018; Ran-

jan et al., 2019; Bian et al., 2019) and the combination of learned features with

geometric methods (Zhan et al., 2020; Yang et al., 2020; Zhang et al., 2022c,b).

We refer readers to Chen et al. (2020) for a more detailed discussion of cur-

rent methods. These deep odometry learning methods have achieved promising

performance. However, theoretical understandings remain obscure: (1) how to

learn a compact representation with a theoretically guaranteed generalizability

when test data is biased and (2) in what conditions extra sensors can benefit the

pose prediction problem.
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Information bottleneck: Information bottleneck (IB) provides an appealing

tool for deep learning by learning an informative and compact latent repre-

sentation (Tishby et al., 2000; Tishby and Zaslavsky, 2015; Shwartz-Ziv and

Tishby, 2017). To address the intractability of MI calculation, Alemi et al.

(2017) proposed to optimize a variational bound of IB for deep learning, which

was successfully applied to many tasks including dynamics learning (Hafner

et al., 2020), task transfer (Goyal et al., 2019), and network compression (Dai

et al., 2018). Partly inspired by these developments, we for the first time pro-

pose an IB-based framework for odometry learning and derive an optimizable

variational bound for this sequential prediction problem. The derivation can be

more delicate if we incorporate more constraints, potentially from geometric

and kinematic insights. We further adopt the deterministic-stochastic separa-

tion as in Chung et al. (2015); Hafner et al. (2019, 2020), while ours differs in

that our derivation of the variational bound allows modeling two transition mod-

els separately, each with a deterministic component to improve model capacity.

Moreover, though IB-based methods have shown to be effective for learning

a compact representation, the underpinning generalizability theory remains un-

clear. The generalization error bounds for general learning algorithms have been

studied in Xu and Raginsky (2017) in the information theoretical language. This

work was subsequently extended by Zhang et al. (2021b) to explain the gener-

alizability of deep neural networks. However, their results are not applicable to

the IB-based methods, which will be addressed in this chapter.

Uncertainty modeling for odometry learning: Modeling uncertainty to deal

with extreme cases like hardware malfunctions and unexpected occlusions, is

crucial for a reliable and robust odometry system. It can be categorized into

model-intrinsic epistemic uncertainty and data-dependent aleatoric uncertainty,

which have been studied in the Bayesian deep learning literature (MacKay,

1992; Gal and Ghahramani, 2016; Kendall and Gal, 2017). For odometry, Wang
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et al. (2018) and Yang et al. (2020) captured the aleatoric uncertainty by impos-

ing a probabilistic distribution on poses and used the second moment prediction

as an uncertainty measure. Recently, Loquercio et al. (2020) showed that a com-

bined epistemic-aleatoric uncertainty framework (Kendall and Gal, 2017) could

improve the performance on several robotics tasks such as motion and steering

angle predictions. In contrast to them, our framework provides a built-in and ef-

ficient uncertainty measure that accounts for both uncertainty types. We empir-

ically demonstrate how to use this uncertainty measure to evaluate data quality

and system biases. Accordingly, we propose a refined inference procedure that

discards highly uncertain results to improve pose prediction accuracy.

2.3 Information Theoretical Odometry Learning

Odometry aims to predict the relative 6-DOF pose ξt between two consecutive

observations {o(m)
t−1:t}Mm=1 fromM sensors (e.g. camera, IMU and lidar), where

t is the time index. This pose prediction problem can be formulated as ξt =

g({o(m)
t−1:t}Mm=1,Θ), where g is the mapping function of an odometry system and

Θ is the parameter set of g. Classic deep odometry learning methods model g by

neural networks and learn Θ from training data. Furthermore, they usually use

a recurrent module to model the motion dynamics of the observation sequence.

Fig. 2.1(a) shows a typical procedure shared by representative deep odometry

learning methods.

In many settings, observations are of high dimensionalities, such as images and

lidar 3D points. Geometric methods use low-dimensional features to represent

observations, while learning-based methods learn a representation from training

data. However, both features may contain pose-irrelevant information that is

specific to certain sensor domain. Retaining such information encourages the

model to overfit the training data and yield poor generalization performance.
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Figure 2.1. (a) The classic learning-based odometry framework, where 6-DOF poses
are directly predicted from deterministic latent representations. (b) The proposed infor-
mation bottleneck (IB) framework for odometry learning. h and s are the deterministic
and stochastic components, respectively. Superscripts o and p represent the observation-
and pose-level transition models. Red solid arrows denote the pose regressor, and red
dashed arrows denote the bottleneck constraints. Output arrows from a shaded stochas-
tic representation represent samples from the learned latent distribution.

Since parsimony is preferred in machine learning, it is expected to eliminate the

pose-irrelevant information.

To this end, we tackle this problem by explicitly introducing a constraint on the

pose-irrelevant information. Specifically, we quantify the pose-irrelevance and

the usefulness of a latent representation for pose prediction from an informa-

tion theoretical perspective. By assuming the latent representation st at time t

is drawn from a Gaussian distribution, the MI I({o(m)
1:T }Mm=1||s1:T |ξ1:T ) and the

MI I(ξ1:T ||s1:T ) can provide quantitative measures for the aforementioned two

aspects. Accordingly, given a sequence of observations {o(m)
1:T }Mm=1 and pose an-

notations ξ1:T from time 1 to T , the information theoretical odometry learning

problem is formulated as:

maxΘ J (Θ) = I(ξ1:T ||s1:T )− γIbottleneck, (2.1)

Ibottleneck = I({o(m)
1:T }

M
m=1||s1:T |ξ1:T ), (2.2)

where the IB weight γ controls the trade-off between the two MI terms. By

Equation 2.1, the latent representation s1:T essentially provides an information

bottleneck between poses and observations, which eliminates pose-irrelevant
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information from the observations. Due to the high dimensionality of the ob-

servation space, it is non-trivial to calculate the two MI. Thus we optimize a

variational lower bound instead:

J (Θ) ≥ J ′(Θ) = E
s1:T ,{o(m)

1:T }Mm=1,ξ1:T
[
∑T

t=1
J ′
t], (2.3)

J ′
t = J pose

t − γJ bottleneck
t , (2.4)

J pose
t = log qθ(ξt|st), (2.5)

J bottleneck
t = DKL(pϕ||qφ)., (2.6)

pϕ = pϕ(st|{o(m)
t−1:t}Mm=1, st−1), (2.7)

qφ = qφ(st|ξt, st−1). (2.8)

The detailed derivation is provided at the end of this chapter. This lower bound

consists of a variational pose regressor qθ(ξt|st), an observation-level transition

model pϕ(st|{o(m)
t−1:t}Mm=1, st−1), and a pose-level transition model qφ(st|ξt, st−1),

all of which are modeled by neural networks. For simplicity, we denote the

representations from the observation-level and pose-level transition models sot
and spt , respectively. In practice, sot is used for the pose regressor. Intuitively,

minimizing the KL divergence in Equation 2.6 forces the distribution of sot to

approximate that of spt which does not encode the observation information at

time t, thus regularizing sot for containing pose-irrelevant information.

Stochastic-only transition models, however, may compromise model perfor-

mance due to uncertainty accumulation during the sampling process. To ad-

dress this problem, we further introduce a deterministic component according

to Chung et al. (2015) and Hafner et al. (2019). In doing so, we reformulate the



2.3 INFORMATION THEORETICAL ODOMETRY LEARNING 19

two transition models in the KL divergence in Equation 2.6 as:

observation-level : pϕ(sot |hot ), (2.9)

hot = f o(hot−1, {o
(m)
t−1:t}Mm=1, s

o
t−1, s

p
t−1), (2.10)

pose-level : qφ(spt |h
p
t ), (2.11)

hpt = fp(hpt−1, ξt, s
o
t−1, s

p
t−1). (2.12)

We use two deterministic functions f o and fp for observation- and pose-level

transitions, respectively, which are both modeled by recurrent neural networks.

In addition, both sot−1 and spt−1 are used for the two deterministic transition func-

tions to help to reduce the KL divergence between the distributions of sot and spt .

Ground-truth 6-DOF poses are fed into fp during the training phase, while for

testing, we use predicted poses to provide a runtime estimate of spt . Fig. 2.1(b)

shows the overall framework of our method.

Remark I: Since we model the latent representation in the probabilistic space,

the variance of the latent representation naturally provides an uncertainty mea-

sure. We empirically show how this intrinsic uncertainty reveals data quality and

system bias in Chapter 2.5.7. Of note is that it is straightforward to extend the

proposed information theoretical framework to different problem settings. We

can add arbitrary linear MI constraints into the proposed objective and derive

similar variational bounds to satisfy different requirements such as dynamics-

awareness in complex environments.

Remark II: All variational IB-based methods origin from Alemi et al. (2017).

However, applying IB into a specific domain is non-trivial. The challenge lies

in the derivation of proper variational bounds based on the specific properties

of each problem. This derivation can be more delicate if we incorporate more

constraints, potentially from geometric and kinematic insights. Besides, we dif-

fer from Dai et al. (2018) and Goyal et al. (2019) in that sequential observations

are modeled. From this perspective, our development related to Hafner et al.
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(2019) and Hafner et al. (2020), from which we further borrowed the motiva-

tion of the deterministic component, which by itself is rooted from Chung et al.

(2015) and Buesing et al. (2018). Ours differs in that we model the two tran-

sition models (Equation 2.6) separately, each with a deterministic component

to improve model capacity (Fig. 2.1(b) and Equations 2.9-2.11). Moreover, we

theoretically prove that constraining the IB objective essentially upper bounds

the expected generalization error and establish the connection between IB and

geometric methods in Chapter 2.4.4, which provides deeper insights into IB-

based methods.

2.4 Theoretical Analysis

Formulating a problem in the information theoretical language enables us to

analyze the proposed method by exploring elegant tools in information the-

ory (Cover, 1999) and related results in learning theory (Xu and Raginsky, 2017;

Zhang et al., 2021b). In this chapter, we show that the MI between the bottle-

neck and observations as well as the latent space dimensionality upper bound

the expected generalization error, which provides not only insights into the gen-

eralizability of the method but also a performance guarantee. To our knowledge,

this is the first time that such generalization bounds have been derived for IB by

using a general loss function other than cross-entropy (Vera et al., 2018). By

replacing the general loss function with the cross-entropy, our bound is tighter

than that obtained by Vera et al. (2018) in terms of the sample size. We fur-

ther derive a lower bound on the MI between the latent representation and poses

given extra sensors, which suggests what features make a sensor useful for pose

prediction in the information theoretical language. The connection between in-

formation bottleneck and geometric methods is also established to provide fur-

ther insights. The proofs of the proposed lemma, theorems, and corollaries will

be provided at the end of this chapter.
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2.4.1 Generalization Bound for Information Bottleneck

Xu and Raginsky (2017) and Zhang et al. (2021b) obtained the generalization

bound w.r.t. the MI between input dataX and learning parameters Θ for general

learning algorithms and neural networks. However, what IB regularizes is the

MI between X and the latent representation. To derive a generalization bound

for the IB objective function, we first prove a relationship between these two

kinds of MI in Lemma 1 under the Markov chain X → S → ξ, an underlying

assumption for IB.

LEMMA 1. If X → S → ξ forms a Markov chain and assume ξ = g(X,Θ) is a

one-to-one function w.r.t. X and Θ, then we have

I(X,S) ≥ I(X, ξ) = I(X,Θ) + Eθ[H(X|θ)] (2.13)

≥ I(X,Θ). (2.14)

Lemma 1 enables us to extend the generalizability results for neural networks

regarding I(X,Θ) (Zhang et al., 2021b) to the IB setting, leading to the follow-

ing theoretical counterpart:

THEOREM 1. Assuming X → S → ξ is a Markov chain, the loss function

l(X,Θ) is sub-σ-Gaussian distributed1 and the prediction function ξ = g(X,Θ)

is a one-to-one function w.r.t. the input data and network parameters Θ, we have

the following upper bound for the expected generalization error:

E[R(Θ)−RT (Θ)] ≤ exp(−L
2
log

1

η
)

√
2σ2

n
I(X,S), (2.15)

where L, η, and n are the effective number of layers causing information loss, a

constant smaller than 1, and the sample size, respectively. R(Θ) = EX∼D[l(X,Θ)]

1Recall that a random variable l is sub-σ-Gaussian distributed if E[eλ(l−E[l])] ≤
e

λ2σ2

2 , ∀ λ ∈ R.
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is the expected loss value given Θ and RT (Θ) = 1
n

∑n
i=1 l(Xi,Θ) is a sample

estimate of R(Θ) from the training data.

The difference between our result and previous works is that we bound the gen-

eralization error by I(X,S) which is minimized in Equation 2.1 rather than

I(X,Θ) which is hard to evaluate. By Theorem 1, we show that minimizing

the MI between the bottleneck and observations tightens the upper bound on

the expected generalization error and thus provides a theoretical performance

guarantee. It is worth noting that our theoretical results apply not only to our

odometry learning setting but also to a wider variety of tasks that use the IB

method. This bound also implies that a larger sample size and a deeper network

lead to better generalization performance, which is consistent with the results

shown in Xu and Raginsky (2017) and Zhang et al. (2021b).

Remark I: The result of Zhang et al. (2021b) is interesting in that it provides

an explanation for why deeper networks lead to better performance. However,

the expected generalization errors in Zhang et al. (2021b) and Xu and Raginsky

(2017) are both bounded by I(X||Θ), which remains difficult to evaluate in

practice. Though their results give a lot of insights into the generalizability of

algorithms in the information theoretical language, it is non-trivial to minimize

I(X||Θ) explicitly to control the generalization error bound. We move one step

further by extending their results to I(X||S), the mutual information between

input data and latent representations, which itself can be bounded by various

well-established variational bounds (Poole et al., 2019) and optimized during

training. Our result provides an explanation for the empirical generalization

ability of the IB method, which explicitly minimizes I(X||S). By minimizing

I(X||S), we are actually tightening the upper bound of the generalization error,

thus leading to better generalization performance.

A related work by Vera et al. (2018) proved a similar result for IB: "Let F be a

class of encoders. Then, for every PXY and every δ ∈ (0, 1), with probability
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at least 1 − δ over the choice of Sn ∼ P n
XY the following inequality holds

∀QU |X ∈ F :

εgap(QU |X ,Sn) ≤ Aδ

√
I(P̂X ||QU |X)

log(n)√
n

+
Cδ√
n
+O( log(n)

n
), (2.16)

where (Aδ, Bδ, Cδ) are quantities independent of the data set Sn : Aδ :=
√
2Bδ

PX(xmin)
(1+

1/
√
|X|), Bδ := 2 +

√
log( |Y |+3

δ
) and Cδ := 2|U |e−1 + Bδ

√
|Y |log |U |

PY (ymin)
.

εgap(QU |X , Sn) is the generalization gap which is defined as |Lemp(QU |X ,Sn)−

−L(QU |X)|. L(QU |X) and Lemp(QU |X ,Sn) are the true risk and the empirical

risks, respectively." We refer readers to Vera et al. (2018) for more details on

their result

Our result differs from that of Vera et al. (2018) in that: (1) Equation 2.16 only

applies to the cross-entropy loss function, while our result holds for a broader

range of loss functions under the sub-σ-Gaussian assumption; (2) We provide

a tighter generalization bound compared with that of Vera et al. (2018) w.r.t.

sample rate ( 1√
n

vs. log(n)√
n

); (3) For regression problems and for a large latent

space, Aδ and Cδ in Equation 2.16 could be large due to the positive dependency

on |Y | and |U |. Besides, 1
PX(xmin)

and 1
PY (ymin)

might also be large in practice,

resulting in a loose bound for the generalization error.

Remark II: We now give more discussions on the assumptions of Theorem 1:

(1) A Markov chain X → S → ξ is implicitly implied in neural networks

with encoder-decoder structures since the decoder only takes the encoder out-

put as its input and thus does not depend on X given S. In this case, we have

P (ξ|S) = P (ξ|S,X). It is worth noting that in more general settings where

more flexible network structures that allow additional connections between X

and ξ are used, this Markov chain assumption may not hold. However, for the

IB methods, since an IB model is essentially encoder-decoder structured by con-

straining the information flow between the encoder and the decoder, the Markov
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chain assumption on X → S → ξ holds under this setting. (2) As discussed

in Xu and Raginsky (2017), the sub-σ-Gaussian assumption actually implies

a broad range of loss functions. For instance, as long as a loss function l is

bounded, i.e., l(·, ·) ∈ [a, b], then it is guaranteed to be sub-σ-Gaussian dis-

tributed with σ = b−a
2

(Xu and Raginsky, 2017). The network loss landscape

consists of multiple local minima, flat or sharp, and most deep learning meth-

ods assume a local Gaussian distribution by using L2 loss (Chaudhari et al.,

2017). Sub-σ-Gaussian is more general and provides several superiorities over

the commonly used Gaussian assumption. Chaudhari et al. (2017) claimed that

a flat local minimum is preferred for deep learning optimization algorithms due

to the robustness towards parameter perturbations. Sub-σ-Gaussian can well

represent such flat local regions, e.g. the almost-flat bounded uniform distri-

bution is sub-σ-Gaussian distributed. It is also worth noting that considering

the density of local minima (Chaudhari et al., 2017), σ is not necessarily large

for local regions, which can be a concern for the tightness of the generalization

bound. Another appealing property is that the sum of sub-σ-Gaussian is still

sub-σ-Gaussian, i.e. it can fit a larger region with multiple local minima. (3)

The one-to-one function assumption can be conservative due to the complex-

ity of real-world data. For many applications, we may use pretrained models

to extract high-level features and use these features as input data. For exam-

ple, a pretrained FlowNet (Dosovitskiy et al., 2015; Ilg et al., 2017) is usually

used in deep odometry learning methods. The input data part of this assumption

could arguably hold under such circumstances. Considering the prediction part

of this assumption, the cardinality of the space of ξ could be sufficiently large

for regression problems and for classification problems, the cardinality of the

prediction space could also be large since we usually predict the probabilities

of each category. Extending the results to a looser assumption on the network

function remains an interesting direction for future research.
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2.4.2 Generalization Bound for Latent Dimensionality

We further investigate the generalizability w.r.t. model complexity in terms of

the cardinality and dimensionality of the latent representation space under the

IB framework.

COROLLARY 1. Given the same assumptions in Theorem 1 and let |S| be the

cardinality of the latent representation space, we have

E[R(Θ)−RT (Θ)] ≤ exp(−L
2
log

1

η
)

√
2σ2

n
log|S|. (2.17)

It is well recognized that a large model complexity can impair the generalizabil-

ity of the model. We reveal this complexity-overfitting trade-off in Corollary 1,

where the expected generalization error is upper bounded by the cardinality of

the latent representation space. In addition, considering the model design and

sample collection, Corollary 1 indicates that the growing rate of log|S| should

not exceed that of n to avoid an exploded generalization error bound.

COROLLARY 2. Given the same assumptions in Theorem 1 and assume S lies

in a d-dimensional subspace of the latent representation space, supsi∈Si
||si|| ≤

M,∀i ∈ [1, d] and S can be approximated by a densely quantized space, the

following generalization bound holds:

E[R(Θ)−RT (Θ)] ≤ exp(−L
2
log

1

η
)σC, (2.18)

C =

√
dlog(d)

n
+ 2log(2M)

d

n
+

d

n/log(n)
. (2.19)

In practice, it is usually difficult to evaluate log|S| in Corollary 1 numerically.

Therefore, we leverage the quantization trick used in Xu and Raginsky (2017)
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to reduce the upper bound to a function w.r.t. the dimensionality d of the latent

representation space. The result is given in Corollary 2, which suggests that the

growing rate of d should not exceed that of n/log(n). It is worth noting that

this result holds not only for IB but also for a broader range of encoder-decoder

models under the Markov chain assumption on X → S → ξ.

2.4.3 Predictability Bound for Extra Sensors

Odometry performance is highly dependent on the sensors deployed, yet it re-

mains non-trivial to select informative sensors that guarantee a performance

gain. In this section, we address this problem using the information theoreti-

cal language under our proposed framework.

THEOREM 2. If ({o(m)}Mm=1, o
(M+1)) → S → ξ forms a Markov chain, then

we have,

I(ξ||S) ≥ Iold + Inew − Iobs, (2.20)

Iold = I(ξ||{o(m)}(M)
m=1), (2.21)

Inew = I(ξ||o(M+1)|{o(m)}Mm=1), (2.22)

Iobs = I(o(M+1)||{o(m)}Mm=1|ξ). (2.23)

Theorem 2 suggests that if a new sensor o(M+1) is useful for pose prediction,

the MI between o(M+1) and poses given existing sensors should be large. Mean-

while, it is preferred to have a small MI between {o(m)}(M)
m=1 and o(M+1) given

pose information. In other words, a heterogenous sensor that shares little pose-

irrelevant information with existing sensors is desirable. In addition, we fur-

ther observe that the information gain between I(ξ||o(M+1)|{o(m)}Mm=1) and

I(o(M+1)||{o(m)}Mm=1|ξ) provides a theoretical guarantee for the performance

of the learned latent representation.
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2.4.4 Connection with Geometric Methods

More generally, an odometry system can be modeled as h(zk,j, vk, x̌k)→ (x̂k, pj)

where zk,j, vk, x̌k, x̂k and pj are observations, noise, prior pose, posterior pose,

and latent state, respectively. At this level, the bottleneck MI I(zk,j, vk||pj|x̂k) =

H[h(zk,j, vk, x̌k)|x̂k] − H[h(zk,j, vk, x̌k)|x̂k, zk,j, vk] is the extra entropy (∆H)

introduced by (zk,j, vk), which differs for different h. Factor graph based meth-

ods use optimization over L2 costs as h, where pj is inferred landmark and a

Gaussian noise is assumed. ∆H in this case is implied in the noise variance

which corresponds to the pre-specified weight of each cost function. Learning-

based methods learn h from data where pj is the latent feature. Minimizing

∆H means reducing the uncertainty from noise and inexact learned function

forms. The same analysis applies to kinematic function for x̌k. In addition,

filter-based methods can also be included in by following the same logic. Take

the kinematics part of Kalman filter (linear Gaussian system) as an example:

x̌k = Ak ˆxk−1 + uk + wk, where the prior x̌k is the latent state and the vari-

ance of ˆxk−1 and wk are ˆΣk−1 and R, respectively. Then I(uk, wk||x̌k) =

1
2
ln(|Ak

ˆΣk−1A
T
k + R|/|Ak

ˆΣk−1A
T
k |), suggesting that a smaller bottleneck MI

corresponds to a relatively smaller noise variance.

2.5 Experiments

We tested our method on the well-known KITTI (Geiger et al., 2013) and Eu-

RoC (Burri et al., 2016) datasets. Since most existing supervised methods are

not open source, we re-implemented the representative state-of-the-art meth-

ods, including DeepVO (Wang et al., 2017), VINet (Clark et al., 2017), and two

attention-based visual-inertial methods recently proposed by Chen et al. (2019),

namely, SoftFusion and HardFusion, as our baselines. All models shared the

same network architecture for a fair comparison. We further examine the abil-

ity of generalization to more challenging scenarios such as extreme weather
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and lighting conditions by testing DeepVO and InfoVO on vKITTI2 (Cabon

et al., 2020). In addition, we empirically study the pose-irrelevant information

contained in DeepVO and InfoVO to examine the underlying hypothesis of the

problem that we target. We also conducted extensive ablation studies on the

deterministic component, the weight of the IB objective, the sample size, ex-

tra sensors, the intrinsic uncertainty measure, and the growing rate relationship

between the latent dimension and n/log(n).

2.5.1 Datasets and Experimental Settings

The KITTI odometry dataset consists of 11 real-world car driving videos and

calibrated ground-truth 6-DOF pose annotations. The EuRoC dataset was in-

stead collected from a MAV in two buildings, resulting in 11 sequences of dif-

ferent difficulties by manually adjusted obstacles. For visual-inertial experi-

ments, we manually aligned the 100 Hz IMU records in the raw KITTI dataset

to the 10 Hz image sequences using the corresponding timestamps. The image

and IMU sequences in EuRoC were downsampled to 10 Hz and 100 Hz, re-

spectively. We split the training and test datasets following the recent work by

Chen et al. (2019). Our implementation was based on PyTorch (Steiner et al.,

2019). We used GRU (Cho et al., 2014) to model the deterministic transitions

and IMU records. Pretrained FlowNet was used to extract features from image

data (Dosovitskiy et al., 2015; Ilg et al., 2017). More advanced optical flow es-

timation methods could also be explored such as RAFT (Teed and Deng, 2020)

and GMFlow (Xu et al., 2022). The other parts were modeled by MLP layers.

2.5.1.1 Comparison between KITTI and EuRoC

The KITTI dataset is collected from an autonomous driving car in outdoor sce-

narios, while the EuRoC dataset is collected from a MAV in two indoor build-

ings. Thus these two datasets have different statistics, which may require dif-

ferent network design and training strategy finetuning for each dataset. More
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specifically, since KITTI is collected during driving, the camera poses mainly

contains forward translations and left/right rotations, while for EuRoC, the cam-

era poses from a MAV can have more diverse translation and rotation distribu-

tions. As shown in Table 2.1, since the moving speed of a car is higher than a

MAV, the translation scale of KITTI is also larger, while the rotation scale of

EuRoC is larger than that of KITTI due to the motion features of MAV.

Table 2.1. Dataset statistics of KITTI and EuRoC, where the averaged L2-norm values
are summarized. x, y, z correspond to the coordinate system used in KITTI, where
x denotes the forward axis, y denotes the upward axis, and z denotes the rightward
axis. t and r are the overall L2-norm values for the translation and rotation vectors,
respectively.

tx(m) ty(m) tz(m) t(m) rx(
o) ry(

o) rz(
o) r(o)

KITTI 0.0143 0.0195 0.9666 0.9676 0.1217 0.5381 0.1084 0.6255
EuRoC 0.0388 0.0218 0.0358 0.0660 1.0338 0.8559 0.7403 1.8660

Training a good model for EuRoC is more challenging than for KITTI. The rea-

sons are four-fold: (1) Compared with the similar-looking scenarios in KITTI

that mainly contains street views, the scenarios in EuRoC are more diverse, in-

cluding an industrial machine hall and an office room; (2) EuRoC sequences

have different difficulty levels by manually adjusted obstacles, which means

more carefully designed training strategies such as curriculum learning can be

used to improve the performance; (3) The videos collected in EuRoC only con-

tain grey-scale images while those in KITTI contain RGB images instead. Con-

sidering the FlowNet model was pretrained using RGB images, the domain gap

for using grey-scale images should also be taken into account for better perfor-

mance; (4) The translation scale of EuRoC is much smaller, which can cause

difficulty for accurate predictions.
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2.5.1.2 Detailed Network Architecture

The overall network can be separated into four components: (1) Observa-

tion encoders: For image observation, we first extract the output from the

out_conv6_1 layer of a pretrained FlowNet2S (Ilg et al., 2017) model as an

intermediate high-level feature, which is then flattened and fed into three MLP

layers that have feature size 1024 to obtain image features. Note that the last

MLP layer does not use the non-linear activation. For IMU data, we use a two-

layer GRU model that has feature size 1024 to extract IMU features; (2) Deter-

ministic transition models: For the observation-level transition, we first fuse

the observation features and concatenate the fused feature with sot−1 and spt−1

from last time step. The features are concatenated in VINet and InfoVIO. For

SoftFusion, SoftInfoVIO, HardFusion and HardInfoVIO, we also use the same

soft and hard fusion strategy proposed in Chen et al. (2019), while the Gum-

bel temperature linearly degrades from 1 to 0.5 in the first 150 epochs during

training and is fixed to 0.5 for testing. We tile the 6-DOF poses eight times to a

vector of length 48 for the pose-level transition, which is then also concatenated

with sot−1 and spt−1. Ground-truth 6-DOF poses are used during training, while

the predicted poses are used during testing. The concatenated features are then

fed into an MLP and a GRU layer to obtain hot and hpt , respectively. (3) Sto-

chastic state estimators: The deterministic states are fed into two MLP layers

to obtain the mean and standard error vectors of the stochastic representation,

both with size 128. Note that the last MLP layer does not use the non-linear acti-

vation. To avoid a trivial solution, we set the minimum standard error to 0.1 and

only predict the residue, where the softplus function is used to guarantee a pos-

itive residue. We further use the reparameterization trick proposed in Kingma

and Welling (2014) to sample from the stochastic representation distributions,

which enables gradient backpropagation through the stochastic representations.

(4) Pose regressor: We feed the sampled observation-level representation sot

into three MLP layers to obtain the translation and rotation prediction results.
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Figure 2.2. The network structure of the observation encoder.
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Figure 2.3. The network structure of the observation-level transition model.
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Figure 2.4. The network structure of the pose-level transition model, where ξt refers
to the tiled ground-truth poses during the training process, and the tiled predicted poses
during the inference phase, respectively.

Both translation and rotation share the first two MLP layers, while we use two

separate MLP layers without non-linear activation for translation and rotation,

respectively.

All MLP layers with non-linear activation use the Relu function and have fea-

ture sizes 256 and 512 for KITTI and EuRoC, respectively. The state size is
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set to 128 and 256 for KITTI and EuRoC, respectively. For all baseline models

(DeepVO, VINet, SoftFusion, and HardFusion), we remove the pose-level tran-

sitions and stochastic state estimators and directly feed hot into the pose regres-

sor for prediction. The detailed network structures of the observation encoder,

the observation-level transition model, and the pose-level transition model are

illustrated in Fig. 2.2, Fig. 2.3, and Fig. 2.4, respectively.

2.5.1.3 Training and Evaluation Strategies

We used the same training and test splits as Chen et al. (2019). For KITTI,

we used sequences 00, 01, 02, 04, 06, 08, and 09 for training and the rest for

testing. For EuRoC, we used the sequence MH_04_difficult for testing and the

rest for training. KITTI odometry dataset does not contain synchronized IMU

data. Therefore, we manually aligned the 100 Hz IMU records in the raw KITTI

data to the 10 Hz image sequences using the corresponding timestamps. EuRoC

provides synchronized image and IMU data, collected at 20 Hz and 200 Hz,

respectively. Following the practice of previous work (Chen et al., 2019; Clark

et al., 2017), we downsampled the image and IMU data in EuRoC to 10 Hz

and 100 Hz, respectively. By assuming a Gaussian distribution for qθ(ξt|st), we

reduced the optimization of Equation 2.5 to minimizing the L2-norm of the pose

errors, resulting in the following loss function:

L =
N∑

n=1

α||t− t̂||+ β||r − r̂||, (2.24)

where t and t̂ are the ground-truth and predicted translation. r and r̂ are the

ground-truth and predicted rotation. We used Euler angles as the quantitative

rotation measure. α and β are the translation and rotation error weights, re-

spectively, which were set to 1 and 100 for KITTI and 100 and 20 for EuRoC

empirically. We predicted the mean and variance of the stochastic representa-

tion st and set the minimum variance to be 0.01 to avoid a trivial solution. We

set γ in Equation 1 to balance the bottleneck effect. All models were trained for
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300 epochs using mini-batches of 16 clips containing five frames each. We set

an initial learning rate to 1e-4, which was reduced to 1e-5 and 5e-6 at epoch 150

and 250 to stabilize the training process.

We trained and evaluated the odometry model in a clip-wise manner. For eval-

uation, we used a sliding window strategy so that the evaluated clips are over-

lapped, which means a frame-pair can appear at different positions in a clip.

A refinement strategy that eliminates the results from the first position and av-

eragely ensembles the rest was designed based on our empirical observations.

Following Sturm et al. (2012) and Chen et al. (2019), the averaged root mean

squared errors (RMSEs) were used for evaluating both translation and rotation

performance.

Remark I: In odometry learning, we usually use Euler angles or quaternions

for rotation representation rather than SO(3) as implied in SE(3) due to the re-

dundant parameters of the rotation matrix and the orthogonal constraint. We

adopt Euler angles in our experiments and assume a Gaussian distribution in

this vector space for simplicity and easier implementation. Though 3D von

Mises-Fisher distribution (Khatri and Mardia, 1977) and 4D-Bingham distribu-

tion (Gilitschenski et al., 2019) can be arguably more appropriate to model Euler

angles and quaternions, respectively, it is non-trivial to evaluate and use them

for training in practice. The exploration of these more advanced representation

and distribution choices remains potentially important future research work.

Remark II: In terms of the choice of hyperparameters like α, β, and γ, we basi-

cally followed the initial setup of prior works such as Wang et al. (2017); Chen

et al. (2019); Hafner et al. (2020) and performed a non-intensive and small-

range grid searching. More elegant methods such as relying on the covariance

estimates (Peretroukhin and Kelly, 2017) can be considered in future studies

and applications to new datasets.
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2.5.2 Main Results

Without loss of generality, two common types of sensors used in SLAM sys-

tems, i.e., camera and IMU, are examined in this work. The visual-inertial

framework is implemented using three fusion strategies proposed in Chen et al.

(2019), namely InfoVIO, SoftInfoVIO, and HardInfoVIO. We also included two

traditional visual-inertial odometry methods for comparison, i.e., OKVIS (Leuteneg-

ger et al., 2015) for EuRoC and MSCKF (Mourikis and Roumeliotis, 2007; Hu

and Chen, 2014) for KITTI. OKVIS is not used for KITTI due to the lack of

accurate time synchronization between images and IMU data. Following Sturm

et al. (2012) and Chen et al. (2019), the averaged root mean squared errors (RM-

SEs) of translation and rotation are reported. The results are given in Table 2.2,

which support the effectiveness of IB w.r.t. the generalizability to test data.

Specifically, our basic models (InfoVO/InfoVIO) outperformed all baselines

w.r.t. both metrics on KITTI and the translation error on EuRoC. Visual odom-

etry models performed well for translation prediction while incorporating IMU

significantly improved the rotation results. Since the MAV trajectories are chal-

lenging w.r.t. rotation, the traditional method (OKVIS) still outperformed the

other methods, although our result was competitive with the other learning-

based baselines. Our re-implementation achieved a better result on KITTI com-

pared with Chen et al. (2019) but the performance on EuRoC degraded. EuRoC

by its nature is much more challenging than KITTI. We refer the readers to

Chapter 2.5.1.1 for detailed discussions on the comparison of the two datasets.

2.5.2.1 Visualization of KITTI trajectories

Per sequence result and trajectory visualization for DeepVO, InfoVO, VINet

and InfoVIO are further provided to illustrate the benefit of the IB objective.

Results of the test sequences 05, 07, and 10 are presented in Table 2.3 and

Fig. 2.5. Though long-term accumulated drifts are observed for all end-to-end
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Table 2.2. Test results on KITTI and EuRoC. We report the averaged RMSEs for trans-
lation and rotation, respectively. †: Results of MSCKF on KITTI and OKVIS on EuRoC
are from Chen et al. (2019).

Model KITTI EuRoC
t(m) r(o) t(m) r(o)

DeepVO 0.0658 0.0942 0.0323 0.2114
InfoVO 0.0607 0.0869 0.0310 0.2061

MSCKF/OKVIS† 0.116 0.044 0.0283 0.0402

VINet 0.0629 0.0453 0.0281 0.0729
SoftFusion 0.0629 0.0517 0.0281 0.0672
HardFusion 0.0618 0.0447 0.0285 0.0740

InfoVIO 0.0580 0.0416 0.0276 0.0744
SoftInfoVIO 0.0618 0.0438 0.0272 0.0743

HardInfoVIO 0.0559 0.0454 0.0291 0.0763

Figure 2.5. Predicted Trajectories of DeepVO, InfoVO, VINet, and InfoVIO on KITTI
sequences 05, 07 and 10.
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Table 2.3. Per sequence results on KITTI. We report the averaged translation RMSE
drift trel (%) on length of 100m-800m and the averaged rotation RMSE drift rrel
(o/100m) on length of 100m-800m.

Model 05 07 10
trel rrel trel rrel trel rrel

DeepVO 6.25 2.29 5.66 3.60 7.12 1.91
InfoVO 4.30 1.54 4.52 3.34 6.25 2.16

VINet 3.52 1.08 5.39 3.43 8.58 2.89
InfoVIO 3.33 0.91 4.69 3.00 7.43 2.44

learning-based odometry methods, InfoVO and InfoVIO that optimize the IB

objective still perform better than DeepVO and VINet, especially on sequence

05, which is longer and more challenging due to the increased number of turns.

2.5.3 Generalization to challenging scenarios

In addition to the results reported on the test splits of KITTI and EuRoC, the

performance of InfoVO is further examined on vKITTI2 (Cabon et al., 2020),

a simulated autonomous driving dataset that contains various scenarios. We

illustrate the benefit of the IB objective by training DeepVO and InfoVO on

the clean sequences in vKITTI2 and comparing their performance on the more

challenging counterparts that have different weather conditions (rain and fog)

and lighting conditions (morning, sunset, and overcast). Scene 01, 02, and 06

are used as the training set and Scene 18 and 20 are used as the test set. Of note

is that only the clean sequences in the training set are used during training.

Results under different weather and lighting conditions are presented in Ta-

ble 2.4. It is shown that InfoVO achieves better generalization results in the

challenging scenarios than DeepVO w.r.t. both translation and rotation predic-

tions. In addition, our results suggest extreme weather conditions present more

challenging than different lighting conditions due to the noises and texture losses
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Table 2.4. Results on challenging sequences on vKITTI2. W and L denotes sequences
that contain different weather conditions (rain and fog) and lighting conditions (morn-
ing, sunset, and overcast), respectively.

Model Conditions t(m) r(o)

DeepVO W 1.5214 0.1676
InfoVO W 1.5011 0.1368

DeepVO L 1.4642 0.1524
InfoVO L 1.3614 0.1239

in the frames, which remains an interesting research direction towards a more

robust odometry system in those challenging scenarios.

2.5.4 Compactness of the latent space

A key hypothesis underlying the motivation to develop our framework is that

methods without specific consideration on the compactness of the latent space

will implicitly encode pose-irrelevant information into the learnt features, which

can be eliminated by the information bottleneck objective. We empirically

demonstrated this phenomenon by comparing the reconstruction accuracies us-

ing the features learnt by DeepVO and InfoVO.

Since the optical flow features from the pretrained FlowNet2S (Ilg et al., 2017)

are used as the network inputs for both DeepVO and InfoVO, we proposed to

empirically measure the amount of pose-irrelevant information by the ability to

reconstruct those optical flow features from the latent space of DeepVO and In-

foVO, respectively. Specifically, we used three MLP layers as the reconstruction

decoder, which takes the latent features from the DeepVO and InfoVO models

trained on the KITTI dataset as input. We varied the hidden size d of the de-

coder to examine the performance under different reconstruction capacities. We

adopted the same training/test split as in our main experiment and trained the

decoder for 300 epochs.
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Table 2.5. Results of the reconstruction of optical flow features on KITTI.

Model d l̄

DeepVO 1024 0.0387
DeepVO 512 0.0391
DeepVO 256 0.0396
DeepVO 128 0.0401

InfoVO 1024 0.0444
InfoVO 512 0.0456
InfoVO 256 0.0508
InfoVO 128 0.0530

Noise ∼ N(0, 1) 1024 0.0541
Noise ∼ N(0, 1) 512 0.0541
Noise ∼ N(0, 1) 256 0.0541
Noise ∼ N(0, 1) 128 0.0541

The results of the averaged MSE loss l̄ for optical flow feature reconstruction

using different hidden sizes are presented in Table 2.5. We also reported the

results by taking white Gaussian noise as input. The input optical flow vectors

contain both pose-relevant and pose-irrelevant information, such as occlusions

and the motion of dynamic objects. Since InfoVO achieves a higher accuracy

than DeepVO in terms of pose prediction, which indicates that InfoVO has ex-

tracted more pose-relevant information than DeepVO to achieve this, the infe-

riority of InfoVO to reconstruct optical flow features indicates that InfoVO has

eliminated more pose-irrelevant information than DeepVO, while maintaining

pose-relevant information from the optical flow features for downstream pose

prediction tasks. It is worth noting that the reconstruction performance of In-

foVO is close to that of random noise using the hidden size 128, which means

although a certain degree of pose-irrelevant information may still exist in the

feature space of InfoVO, the remaining amount is small, and it requires a rela-

tively powerful decoder to extract this information.
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2.5.5 Growing rate of the latent dimension

As suggested in Corollary 2, the growing rate of the latent dimension d should

not exceed that of n/log(n) to avoid overfitting and achieve a tighter general-

ization bound. To illustrate this effect, we use different sample size ratios for

sequence 01 to train InfoVO, and test the trained models on sequences 09 and 10

that have quite different motion patterns (slower vehicle speed) with sequence

01. We first choose the sample size ratio r0 = 1/4 as the starting point, and

empirically determine its corresponding latent dimension d0 = 384 that leads to

neither underfitting nor overfitting. Then we study the performance of InfoVO

models using different latent dimensions under the sample size ratios r1 = 1/2

and r2 = 1.0, whose growing rates of n/log(n) are 1.780 and 3.208, respec-

tively. The results are presented in Fig. 2.6.

Figure 2.6. Results of varying latent dimensions (256, 512, 1024, 1536, 2048) under
the sample size ratios 1/2 (red) and 1.0 (blue). The RMSE results of the combined 6-
DOF translation and rotation vector are reported.

We examine the results of latent dimensions 256, 512, 1024, 1536, and 2048.

For r1 = 1/2 and r2 = 1.0, the latent dimensions that have the same growing

rates as n/log(n) are 384 ∗ 1.780 ≈ 684 and 384 ∗ 3.208 ≈ 1232, respec-

tively. Accordingly, our results showed that the latent dimensions 512 and 1024

achieved the best test results before overfitting for r1 = 1/2 and r2 = 1.0,

respectively. A small latent dimension led to an underfitted model while over-

fitting was observed when the growing rate of the latent dimension exceeds that

of n/log(n), which supports Corollary 2 empirically.
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2.5.6 Ablation studies

Extensive ablation studies were conducted to examine the effects of (1) the de-

terministic component, (2) the IB weight, (3) the sample size and (4) extra sen-

sors. Key observations include: (1) Without the deterministic component, both

translation and rotation performance dropped significantly; (2) Determining the

IB weight γ presents a trade-off between the accuracy of translation and rotation

prediction; (3) A larger sample size reduces both the uncertainty and prediction

errors; and (4) IMU is more ‘useful’ than cameras for rotation prediction while

cameras are more crucial than IMU for translation prediction, according to the

discussions on Theorem 2.

2.5.6.1 Effect of the deterministic component

We conducted stochastic-only ablation experiments to examine the effects of

the deterministic components in Equation 2.9 and Equation 2.11 by remov-

ing the deterministic nodes in Fig. 2.1(b). We implemented two versions de-

pending on whether the observation- and pose-level latent representations (so

and sp) were both used as the recurrent network state (StochasticVO/VIO-d),

or not (StochasticVO/VIO-s). Results are summarized in Table 2.6. Without

the deterministic component, the performance of both translation and rotation

dropped significantly, which supports the effectiveness of the proposed deter-

ministic component.

Table 2.6. Results of the stochastic-only models on KITTI.

Model t(m) r(o)

StochasticVO-s 0.0758 0.0931
StochasticVO-d 0.0783 0.0899
InfoVO (full) 0.0607 0.0869

StochasticVIO-s 0.0714 0.0512
StochasticVIO-d 0.0734 0.0507
InfoVIO (full) 0.0580 0.0416
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Remark: For the stochastic-only models, we remove the stochastic state es-

timators and let the GRU layer in the deterministic transition models directly

output the means and standard error residues of the stochastic representation.

For state transitions, we then used sampled states as the transitioned state con-

text for the transition model at the next time step. More details of the two im-

plementations are given below. StochasticVO/VIO-d is short for "stochastic

VO/VIO with double transition states", which used (sot−1, s
p
t−1) as the transi-

tion state from the last time step for both observation- and pose-level transi-

tions. StochasticVO/VIO-s is short for "stochastic VO/VIO with single transi-

tion states", which used (sot−1, s
o
t−1) and (spt−1, s

p
t−1) as the transition state from

last time step for observation- and pose-level transitions, respectively.

2.5.6.2 Effect of the IB weight

We examined the effect of the IB weight, i.e. γ in Equation 2.1 and Equation 2.4.

As shown in Table 2.7, Although γ = 0.1 presents a good choice for training

on the EuRoC dataset, we observed that the translation and rotation results did

not change consistently with different IB weights on the KITTI dataset. While

the translation accuracy degrades under a larger γ, the rotation result improves

instead. This finding indicates that the determination of the IB weight actually

presents a trade-off between the accuracy of translation and rotation predictions

and should be taken into account in different scenarios according to the require-

ments of specific tasks.

2.5.6.3 Effect of the sample size

We study the effect of the sample size by using different ratios rn of training

samples for training the model. Recall that we let the minimum variance be

0.01 to avoid a trivial solution, which sets an empirical lower bound of the un-

certainty. Table 2.8 shows that a larger sample size reduces both the uncer-

tainty and prediction errors. An interesting observation from our results is that



2.5 EXPERIMENTS 42

Table 2.7. Results of varying IB weights γ for InfoVIO.

γ
KITTI EuRoC

t(m) r(o) t(m) r(o)

0.0 0.0639 0.0482 0.0278 0.0814
0.01 0.0559 0.0449 0.0277 0.0794
0.05 0.0570 0.0424 0.0283 0.0785
0.1 0.0580 0.0416 0.0276 0.0744
0.5 0.0612 0.0411 0.0335 0.0765
1.0 0.0648 0.0375 0.0873 0.0948

though more training samples still benefit the prediction performance, the aver-

aged variance or the uncertainty measure does not reduce after half of the dataset

is added. We suspect that this may be due to the fact that KITTI sequences ex-

hibit quite similar patterns (mostly road driving scenarios). Thus half samples

are sufficient for the model to be "familiar" with the dataset and reach the uncer-

tainty margin. While if the training samples are not sufficient enough, e.g. 1/4

of total samples, the variance increases significantly.

Table 2.8. Results of varying sample sizes on KITTI. rn: the ratio of training samples.
σ̄2: the averaged variance of the latent representation.

rn t(m) r(o) σ̄2

1/4 0.1977 0.1040 0.0109
1/2 0.0602 0.0644 0.0101
3/4 0.0589 0.0544 0.0102
full 0.0580 0.0416 0.0102

2.5.6.4 Effect of extra sensors

Motivated by Theorem 2 and our failure-awareness analysis, we study the per-

formance gain of IMU given images and vice versa. The comparison between

InfoVO and InfoVIO provides the performance gain of IMU given images. Sim-

ilarly, to study the performance gain of images given IMU, We trained an IMU-

only model, denoted as InfoIO, which is then compared with InfoVIO. The

results are summarized in Table 2.9, which implies that IMU is more ‘useful’



2.5 EXPERIMENTS 43

than cameras for rotation prediction while cameras are more crucial than IMU

for translation prediction. Moreover, IMU provides a larger performance gain

in EuRoC than KITTI, which is consistent with the fact that the synchronization

in EuRoC between IMU and ground-truth poses are more accurate. We also

observed that InfoIO performs poorly in KITTI. The large performance gain of

images given IMU in KITTI w.r.t. both translation and rotation might also result

from the inaccurate alignment of IMU records from the raw KITTI dataset to the

image and ground-truth pose sequences.

Table 2.9. Performance gain of IMU given images and images given IMU.

Model KITTI EuRoC
t(m) r(o) t(m) r(o)

InfoIO 0.2069 0.1164 0.0667 0.0740
InfoVO 0.0607 0.0869 0.0310 0.2061
InfoVIO 0.0580 0.0416 0.0276 0.0744

2.5.7 What Does the Intrinsic Uncertainty Mean?

We next used the averaged variance of the stochastic latent representation as

an intrinsic uncertainty measure and empirically showed how this uncertainty

reveals the system properties and data degradation. We found some interesting

relationships between the uncertainty and poses, e.g., larger turning angles and

smaller forward distances lead to higher uncertainty. Our analysis suggests a

practical data collection guideline, i.e., augmenting the uncertain parts of the

pose distribution.

2.5.7.1 Uncertainty on KITTI and EuRoC

We show the uncertainty results of InfoVIO on KITTI and EuRoC in Fig. 2.7

and Fig. 2.8, respectively. Since the translations along x and y axes and the

rotations around x and z axes are relatively small in the KITTI dataset, their
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uncertainties do not exhibit a clear pattern. While for the translation along the

forward axis-z and the rotation around the upward axis-y (turning left/right),

a clear negative and a clear positive relationship are observed for each motion.

The reason for this can be that a large forward parallax provides more distinctive

matching features for pose prediction, while a large turning angle instead dra-

matically reduces the shared visible areas and results in difficulties in achieving

accurate predictions. For the EuRoC dataset, we observed a consistent positive

relationship for all three rotations, which makes sense in that the MAV rotations

are more uniformly distributed along the three axes. The negative relationship

in the translation results of EuRoC is more obscure than that of KITTI, partly

due to the relative difficulties in accurately predicting MAV translations since

EuRoC has a much smaller translation scale than KITTI.

Remark: There is also a line of work that attempts to combine learning based

methods with geometric pipelines (Peretroukhin and Kelly, 2017; Yang et al.,

2020), where uncertainty plays an important role by serving as a quality mea-

sure to properly weigh the learned results. The recent successful work by Yang

et al. (2020) used learned aleatoric uncertainty to integrate learned results into

the DVO pipeline and achieves SOTA performance in monocular odometry. Our

work makes contribution in that we do not explicitly learn the variance of final

prediction, but use the variance of the intrinsic latent state instead as the un-

certainty measure, which we empirically show that can capture the epistemic

uncertainty as well and holds the potential to provide better fusion guidance. It

remains an interesting future research direction to see whether our uncertainty

measure can really benefit this hybrid pipeline that combines the merits of both

learning and geometric methods.

2.5.7.2 Uncertainty w.r.t. the evaluated position in a clip

We trained and evaluated the odometry model in a clip-wise manner. Surpris-

ingly, the evaluated position for a frame-pair in consecutive clips also affected
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Figure 2.7. Uncertainty results of InfoVIO on KITTI. The top and bottom rows repre-
sent translation and rotation results. The first, second, and third columns represent x,
y, and z, respectively. x, y, z are with respect to the coordinate system in KITTI. pos-i
means the result is evaluated at the i-th position in a clip.

Table 2.10. Results on KITTI by evaluating at different positions in a clip.

t(m) pos-0 pos-1 pos-2 pos-3 pos-4

DeepVO 0.0734 0.0681 0.0661 0.0658 0.0659
InfoVO 0.0689 0.0631 0.0618 0.0608 0.0604
VINet 0.0683 0.0645 0.0645 0.0632 0.0615

InfoVIO 0.0671 0.0602 0.0586 0.0580 0.0572

r(o) pos-0 pos-1 pos-2 pos-3 pos-4

DeepVO 0.0970 0.0949 0.0939 0.0940 0.0951
InfoVO 0.0904 0.0881 0.0871 0.0869 0.0872
VINet 0.0463 0.0455 0.0454 0.0454 0.0456

InfoVIO 0.0427 0.0417 0.0420 0.0420 0.0421

the intrinsic uncertainty, as shown in Fig. 2.7 and Fig. 2.8. This makes sense

in that when evaluated at a latter position of a clip, the prediction model can

leverage more information accumulated from former observations, thus leading

to more confident predictions. In Table 2.10, we show that, in general, a larger

uncertainty results in a higher prediction error. The result also holds for the

deterministic DeepVO and VINet baselines, implying that this is a structural

system problem in the clip-wise recurrent models.
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Figure 2.8. Uncertainty results of InfoVIO on EuRoC. The arrangement and notation
are kept the same as Fig. 2.7.

Therefore, our findings supports that InfoVO is able to capture this kind of epis-

temic uncertainty, which is caused by the model design rather than input data.

Based on this observation, we propose a simple refinement strategy that elimi-

nates results from the most uncertain position (pos-0) and averagely ensembles

the results from the rest positions. We report the refined evaluation results for

all models in our main results and ablation studies.

2.5.7.3 Failure-awareness

We show that our intrinsic uncertainty measure is failure-aware, which is crucial

for a robust odometry system. We considered two failure cases, namely, degra-

dations with noisy data and missing data. We add Gaussian noise with mean 0

and standard error 0.1 to the observations in the test dataset to create noisy data.

To generate missing data, we replace the observations with the Gaussian noise.

In Fig. 2.9, we report the visualization results of uncertainties versus different

translations and rotations on KITTI by applying data corruption to both images

and IMU. The results of single sensor corruption under the noisy and missing
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Figure 2.9. Uncertainty results of InfoVIO on both noisy and missing data of the KITTI
dataset. The arrangement and notation are kept the same as Fig. 2.7. Blue, orange, and
green circles denote results from normal data, noisy data, and missing data, respectively.
Both images and IMU records were degraded.

Figure 2.10. Uncertainty results of InfoVIO on noisy data of the KITTI dataset. The
arrangement and notation are kept the same as Fig. 2.7. Blue, orange, green, and red
circles denote results from normal data and degraded data with images, IMU, and both
images and IMU being noisy, respectively.

data settings are also provided in Fig. 2.10 and Fig. 2.11, respectively. The vi-

sualization results on EuRoC is provided in the Supplementary Material. We

summarize the intrinsic variances under different data degradation settings in
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Figure 2.11. Uncertainty results of InfoVIO on missing data of the KITTI dataset. The
arrangement and notation are kept the same as Fig. 2.7. Blue, orange, green, and red
circles denote results from normal data and degraded data with images, IMU, and both
images and IMU missing, respectively.

Table 2.11. Results of the proposed intrinsic uncertainties under different data degra-
dation settings on KITTI and EuRoC. σ̄2: the averaged variance of the latent represen-
tation. ✓, N , andM denote clean, noisy, and missing data, respectively.

Image IMU σ̄2 (KITTI) σ̄2 (EuRoC)

Clean ✓ ✓ 0.0101 0.0103

Noisy N ✓ 0.0102 0.0103
Noisy ✓ N 0.0104 0.0119
Noisy N N 0.0104 0.0119

Missing M ✓ 0.0101 0.0103
Missing ✓ M 0.0106 0.0119
Missing M M 0.0107 0.0119

Table 2.11. Our model becomes more uncertain as the data degrades. The un-

certainty reaches the highest when the data is missing, as expected. A more

interesting observation is that the quality of IMU data dominates the uncer-

tainty for both KITTI and EuRoC, implying that current image encoders are

not trained well enough, and a better image encoder is desirable to fully utilize

the visual information. Also, data degradation on IMU records leads to higher
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uncertainty in EuRoC than in KITTI. We suspect the reason is that the synchro-

nization between the ground-truth poses and IMU records are less accurate in

KITTI than in EuRoC, leading to noisy IMU data for training. At last, the model

trained on EuRoC exhibits the same performance on the noisy and the missing

data, which implies that EuRoC dataset may be more prone to noises. These

observations support that the proposed intrinsic uncertainty measure provides

a practical tool for failure diagnoses, such as noises, sensor malfunctions, and

even mis-synchronization between sensors.

2.6 Derivations and Proofs

2.6.1 Derivation of the Variational Lower Bound

By the well-established variational bounds for mutual information (MI) (Kingma

and Welling, 2014; Alemi et al., 2017; Poole et al., 2019), we directly have a

lower bound and a upper bound for the first and second MI in Equation 2.1,

respectively:

I(ξ1:T ||s1:T ) ≥ Es1:T ,ξ1:T [log q(ξ1:T |s1:T )], (2.25)

I({o(m)
1:T }

M
m=1||s1:T |ξ1:T ) ≤ E{o(m)

1:T }Mm=1,ξ1:T
[DKL[p(s1:T |{o(m)

1:T }
M
m=1, ξ1:T )||q(s1:T |ξ1:T )]].

(2.26)

Also, it is straightforward to show that Ex,y[f(x)] = Ex[f(x)] if f(x) is a func-

tion that does not depend on y:

Ex,y[f(x)] =

∫
x

∫
y

p(x, y)f(x)dxdy (2.27)

=

∫
x

[

∫
y

p(x)p(y|x)dy]f(x)dx (2.28)

=

∫
x

p(x)[

∫
y

p(y|x)dy]f(x)dx (2.29)

=

∫
x

p(x)f(x)dx = Ex[f(x)]. (2.30)



2.6 DERIVATIONS AND PROOFS 50

Thus, we change the subscripts of the expectations in Equations 2.25-2.26 to

s1:T , ξ1:T , and {o(m)
1:T }Mm=1. For simplicity, we omit the subscripts and denote

{o(m)
1:T }Mm=1 as o1:T in the rest of the derivation. We assume Markov property

for this sequence processing problem. Then the right-hand side (RHS) of Equa-

tion 2.25 becomes:

E[log q(ξ1:T |s1:T )] = E[log
T∏
t=1

q(ξt|st)] = E[
T∑
t=1

log q(ξt|st)]. (2.31)

The formulation of information bottleneck implies that ξ → o → s forms a

Markov chain, since the feature encoder for s only depends on the input data

o (Tishby et al., 2000; Alemi et al., 2017). Therefore, we have p(s1:T |o1:T , ξ1:T ) =

p(s1:T |o1:T ). Then by Equation 2.30 and the Markov assumption, the KL diver-

gence term inside the expectation in the RHS of Equation 2.26 becomes:

DKL[p(s1:T |o1:T , ξ1:T )||q(s1:T |ξ1:T )] (2.32)

=

∫
s1:T

p(s1:T |o1:T , ξ1:T )log
p(s1:T |o1:T , ξ1:T )
q(s1:T |ξ1:T )

ds1:T (2.33)

=

∫
s1:T

p(s1:T |o1:T , ξ1:T )log
p(s1:T |o1:T )
q(s1:T |ξ1:T )

ds1:T (2.34)

=

∫
s1:T

p(s1:T |o1:T , ξ1:T )log
T∏
t=1

p(st|ot−1:t, st−1)

q(st|ξt, st−1)
ds1:T (2.35)

=

∫
s1:T

p(s1:T |o1:T , ξ1:T )
T∑
t=1

log
p(st|ot−1:t, st−1)

q(st|ξt, st−1)
ds1:T (2.36)

=
T∑
t=1

Es1:T [log
p(st|ot−1:t, st−1)

q(st|ξt, st−1)
] =

T∑
t=1

Est [log
p(st|ot−1:t, st−1)

q(st|ξt, st−1)
](2.37)

=
T∑
t=1

DKL[p(st|ot−1:t, st−1)||q(st|ξt, st−1)] (2.38)

By sending Equation 2.31 and Equation 2.38 to Equation 2.25 and Equation 2.26,

respectively, we obtain the lower bound of the information bottleneck objective

for odometry learning.
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2.6.2 Proof of Lemmas, Theorems, and Corollaries

2.6.2.1 Proof of Lemma 1:

By assuming that g is a one-to-one function, we have p(ξ) = p(x, θ) for an

instantiation g : x, θ → ξ for ξ = g(X,Θ). Then we have:

I(X||ξ) =

∫
x

∫
ξ

p(x, ξ)log
p(x, ξ)

p(x)p(ξ)
dxdξ (2.39)

=

∫
x

∫
(x′,θ)

p(x, (x′, θ))log
p(x, (x′, θ))

p(x)p(x′, θ)
dxd(x′, θ) (2.40)

=

∫
(x,θ)

p(x, (x, θ))log
p(x, (x, θ))

p(x)p(x, θ)
d(x, θ) (2.41)

+

∫
x

∫
(x′ ̸=x,θ)

p(x, (x′, θ))log
p(x, (x′, θ))

p(x)p(x′, θ)
dxd(x′, θ). (2.42)

Because ∀x ̸= x′, p(x, (x′, θ)) = 0 and lim
a→0

alog(a) = 0, we have:∫
x

∫
(x′ ̸=x,θ)

p(x, (x′, θ))log
p(x, (x′, θ))

p(x)p(x′, θ)
dxd(x′, θ) = 0. (2.43)

By p(x, (x, θ)) = p(x|x, θ)p(x, θ) = p(x, θ), we have:∫
(x,θ)

p(x, (x, θ))log
p(x, (x, θ))

p(x)p(x, θ)
d(x, θ) (2.44)

=

∫
(x,θ)

p(x, θ)log
p(x, θ)

p(x)p(x, θ)
d(x, θ) (2.45)

=

∫
(x,θ)

p(x, θ)log
1

p(x)
d(x, θ) =

∫
x

∫
θ

p(x, θ)log
1

p(x)
dxdθ. (2.46)

By combining Equation 2.43 and Equation 2.46 with Equation 2.42, I(X||ξ)

becomes:

I(X||ξ) =
∫
x

∫
θ

p(x, θ)log
1

p(x)
dxdθ. (2.47)

Recall the definition of I(X||Θ):

I(X||Θ) =

∫
x

∫
θ

p(x, θ)log
p(x, θ)

p(x)p(θ)
dxdθ =

∫
x

∫
θ

p(x, θ)log
p(x|θ)
p(x)

dxdθ

(2.48)
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Therefore we have:

I(X||Θ)− I(X||ξ) =

∫
x

∫
θ

p(x, θ)log(x|θ)dxdθ (2.49)

=

∫
x

∫
θ

p(θ)p(x|θ)log(x|θ)dxdθ (2.50)

= −
∫
θ

p(θ)[−
∫
x

p(x|θ)log(x|θ)dx]dθ (2.51)

= −Eθ[H(x|θ)] ≤ 0 (2.52)

Because X → S → ξ forms a Markov chain, we have I(X||ξ) ≤ I(X||S).

Then by Equation 2.52, Lemma 1 holds.

2.6.2.2 Proof of Theorem 1

Assume the loss function l(X,Θ) is sub-σ-Gaussian distributed, Xu and Ragin-

sky (2017) has proven that the following bound holds for general algorithms

with learning parameter set Θ:

E[R(Θ)−RT (Θ)] ≤
√

2σ2

n
I(X||Θ). (2.53)

Zhang et al. (2021b) extended this result to the setting of neural networks and

derived the generalization bound for a neural network that has L layers causing

information loss, where η is a constant smaller than 1.:

E[R(Θ)−RT (Θ)] ≤ exp(−L
2
log

1

η
)

√
2σ2

n
I(X||Θ). (2.54)

By Lemma 1 and Equation 2.54, Theorem 1 holds.

2.6.2.3 Proof of Corollary 1

The relationship between mutual information, entropy and the cardinality of the

variable space is well recognized, as given in Cover (1999):

I(X||S) = H(S)−H(S|X) ≤ H(S) ≤ log|S|. (2.55)
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By Equation 2.55 and Theorem 1, Corollary 1 holds.

2.6.2.4 Proof of Corollary 2

We use the same quantization trick in Xu and Raginsky (2017). We define the

covering number κ(r, S) as the cardinality of the smallest set S ′ ⊂ S s.t. ∀s ∈

S, ∃s′ ∈ S ′ with ||s − s′|| ≤ r. Assume supsi∈Si
||si|| ≤ M,∀i ∈ [1, d] and

let r = 1/
√
n, we have κ ≤ (2M

√
dn)d (Xu and Raginsky, 2017). We give a

proof below for this result, which is omitted in Xu and Raginsky (2017):

We first construct S̃ ⊂ S that satisfies ∀si ∈ Si, ∃s̃i ∈ S̃i with ||si − s̃i|| ≤
r√
d
,∀i ∈ [1, d], where i denotes the dimension of the d-dimensional subspace.

Then S̃ also satisfies that ∀s ∈ S, ∃s̃ ∈ S̃ with:

||s− s̃|| =

√√√√ d∑
i=1

||si − s̃i||2 ≤

√√√√ d∑
i=1

r2

d
=

√
d
r2

d
= r. (2.56)

For i-th dimension, by the assumption that supsi∈Si
||si|| ≤ M , we have si ∈

[−M,M ]. We can uniformly separate the value range [−M,M ] into 2M
r/

√
d

inter-

vals. Since each interval has length r√
d
, we can construct a S̃i with cardinality

|S̃i| = 2M
r/

√
d

by including all middle points of the intervals. Let r = 1√
n

, we

have |S̃i| = 2M
√
dn. We then construct a S̃ by repeating this process for all

dimensions. By the denifition of κ(r, S) and Equation 2.56, we have:

κ(r, S) ≤ |S̃| =
d∏

i=1

|S̃i| =
d∏

i=1

2M
√
dn = (2M

√
dn)d. (2.57)

When n → ∞, we have r → 0, S ′ → S, and κ(r, S) → |S|. Therefore,

by assuming S can be approximated by such a densely quantized space and by

Equation 2.57 and Corollary 1, we have:

E[R(Θ)−RT (Θ)] ≤ exp(−L
2
log

1

η
)

√
2σ2

n
log(2M

√
dn)d (2.58)

= exp(−L
2
log

1

η
)σT , (2.59)
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where

T =

√
dlog(d)

n
+ 2log(2M)

d

n
+

d

n/log(n)
. (2.60)

Therefore, Corollary 2 holds.

2.6.2.5 Proof of Theorem 2

From Cover (1999), the following two lemmas hold (Lemma 2 and Lemma 3):

LEMMA 2. The inequality for conditional mutual information:

I(X2||X1|ξ) ≥ I(ξ||X2|X1)− I(ξ||X2) + I(X1||X2). (2.61)

LEMMA 3. If (X1, X2)→ S → ξ forms a Markov chain, we have:

I(ξ||X1) + I(ξ||X2) ≤ I(ξ||S) + I(X1||X2). (2.62)

By Lemma 2 and Lemma 3, we have:

I(ξ||S) ≥ I(ξ||X1) + I(ξ||X2)− I(X1||X2) (2.63)

≥ I(ξ||X1) + I(ξ||X2|X1)− I(X2||X1|ξ). (2.64)

Let X1 and X2 denote {o(m)}Mm=1 and o(M+1), respectively. Then by Equa-

tion 2.64, Theorem 2 holds.

2.7 Conclusion and Future Research

This chapter targets odometry learning by proposing an information theoretical

framework that leverages an IB-based objective function to eliminate the pose-

irrelevant information. A recurrent deterministic-stochastic transition model is
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introduced to facilitate the modeling of time dependency of the observation se-

quences. The proposed framework can be easily extended to different problem

settings and provide not only an intrinsic uncertainty measure but also an ele-

gant theoretical analysis tool for evaluating the system performance. We derive

generalization error bounds for the IB-based method and a predictability lower

bound for the latent representation given extra sensors. They provide theoret-

ical performance guarantees for the proposed framework, and more generally,

information-bottleneck based methods. Extensive experiments on KITTI and

EuRoC support our discoveries.

The proposed method falls into end-to-end supervised learning methods. Ob-

taining the required ground-truth pose labels can be challenging for large-scale

data collection and training. Three recent research trends provide promising so-

lutions to mitigate this problem, i.e. (1) embodied methods that utilize simulated

environments, (2) unsupervised learning methods that leveraged the geometric

constraints and trained the model jointly with other auxiliary tasks like depth

prediction, and (3) robust multi-sensor systems that can handle intermittently

missing data. The difficulty in bringing embodied methods into current state-

of-the-art frameworks is the domain gap between simulation and the real world,

where proper domain adaptation techniques are desired. Integrating unsuper-

vised and supervised methods can also be challenging, which requires more

dedicated training strategies and model design. It is worth noting that our pro-

posed IB method improves on the representation level and can also be applied in

these fields to obtain better latent representations. In addition, an odometry sys-

tem deployed in real-world scenarios needs to be robust against potential hard-

ware failures, where a representation that fully exploits the information from all

sensors is desired for the recovery of missing information. We foresee further

developments by incorporating novel techniques into our IB framework.



CHAPTER 3

Scale-Aware Monocular Visual Odometry By Learning From

the Virtual World

We have explored end-to-end odometry learning in Chapter 2. However, end-

to-end learning methods suffer from poor generalizability w.r.t test distribution

shift do not fully exploit the well-established geometric relationships existing

in consecutive camera frames. Thus, it remains unsolved for the community

how to integrate deep learning with classical geometric systems. In this chapter,

we focus on the scale ambiguity problem in monocular visual odometry (VO),

which state-of-the-art optimization-based monocular VO methods suffer from

for long-term predictions. Deep learning has recently been introduced to ad-

dress this issue by leveraging stereo sequences or ground-truth motions in the

training dataset. However, it comes at an additional cost for data collection, and

such training data may not be available in all datasets. To address this issue,

we propose VRVO, a novel framework for retrieving the absolute scale from

virtual data that can be easily obtained from modern simulation environments,

whereas in the real domain no stereo or ground-truth data are required in either

the training or inference phases. Specifically, we first train a scale-aware dis-

parity network using both monocular real images and stereo virtual data. The

virtual-to-real domain gap is bridged by using an adversarial training strategy

to map images from both domains into a shared feature space. The resulting

scale-consistent disparities are then integrated with a direct VO system by con-

structing a virtual stereo objective that ensures the scale consistency over long

56
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trajectories. Additionally, to address the suboptimality issue caused by the sepa-

rate optimization backend and the learning process, we further propose a mutual

reinforcement pipeline that allows bidirectional information flow between learn-

ing and optimization, which boosts the robustness and accuracy of each other.

We demonstrate the effectiveness of VRVO on the KITTI and vKITTI2 datasets.

3.1 Introduction

Visual odometry (VO) systems play an essential role in modern robotics by

providing real-time vehicle motion from visual sensors, which facilitates many

downstream tasks such as autonomous driving, virtual reality, and robot ma-

nipulation (Fraundorfer and Scaramuzza, 2012; Zhang and Tao, 2020). In par-

ticular, monocular VO methods have drawn extensive research attention due

to the easy setup and low cost of a single camera. The camera motion is de-

termined by querying the geometric cues from consecutive monocular images.

Previous monocular VO systems can be categorized into deep learning-based

methods that directly predict camera motion by implicitly learning the geomet-

ric relationship from training data, and optimization-based methods that explic-

itly model the geometric equations and formulate VO as an optimization prob-

lem. While optimization-based methods achieve state-of-the-art (SOTA) per-

formance (Mur-Artal and Tardós, 2017; Engel et al., 2017), they typically suf-

fer from the scale inconsistency problem since the optimization objectives are

equivalent up to an arbitrary scaling factor w.r.t. depth and translation, resulting

in scale-inconsistent overall trajectories, as illustrated in Fig. 3.1.

Targeting at this issue, recent efforts have focused on integrating deep learn-

ing techniques into optimization-based pipelines to retrieve the scale informa-

tion by learning from external data sources (Tateno et al., 2017; Yang et al.,

2018, 2020), or training with internal reprojected depth consistency regulariza-

tion (Bian et al., 2019; Zhan et al., 2020). Supervised deep learning models
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Figure 3.1. (a) Illustration of the proposed VRVO framework: (1) Training using vir-
tual data provides scale information, and (2) The mutual reinforcement pipeline further
improves the prediction quality using optimization feedback. (b) Example trajectories
and point clouds of sequence 09 in the KITTI Odometry dataset using Direct Sparse
Odometry (DSO) and VRVO. It is worth noting that KITTI sequence 09 presents a
closed loop trajectory. While DSO fails to close the loop and produce noisy point
clouds due to the scale drift problem, VRVO significantly improves the result by lever-
aging the proposed domain adaptation and mutual reinforcement modules.

predict camera poses and depths with absolute scale by using ground-truth la-

bels (Wang et al., 2017; Xue et al., 2019). However, the performance of the

learnt network is still inferior compared with optimization-based systems, partly

due to the neglect of the well-established geometric relationship. Additionally,

collecting ground-truth labels can also be costly and time-consuming. On the

other hand, utilizing extra sensors during the training phase, such as stereo im-

ages with a known baseline, provide an alternative method for recovering the

absolute scale (Yang et al., 2018, 2020), while only monocular sequences are

required during inference. Nevertheless, stereo images may be unavailable in

real-world datasets and increase the overall cost of the data collection process.
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Without ground-truth labels and stereo training data, another line of work pro-

poses to ensure scale consistency using a local reprojected depth consistency

loss (Bian et al., 2019; Zhan et al., 2020). Global scale consistency is then

achieved by propagating the scale constraint through overlapped training clips.

However, due to the propagation errors and indirect supervisory signals, these

methods still perform worse than methods that utilize extra information with

absolute scale.

Modern simulation engines have enabled the construction of interactive and

photo-realistic virtual environments (Cabon et al., 2020; Savva et al., 2019;

Wang et al., 2020), where enormous training sequences with various labels, such

as depth, optical flow, surface normal, and camera motion, can be easily gener-

ated at a much lower cost, thus opening up new opportunities for resolving the

inherent problems of monocular VO methods. On the other hand, current learnt

networks are usually integrated into optimization-based VO systems via the pre-

dicted depth and optical flow information. However, the information flow from

the learning process to the optimization backend is typically unidirectional, i.e.,

no feedback signals are used to supervise the learning process. This inherent

separation between learning and optimization results in the suboptimality issue,

which is much less explored.

To this end, we propose VRVO (Virtual-to-Real Visual Odometry), a novel and

practical VO framework that requires only monocular real images in both train-

ing and inference phases, by retrieving the absolute scale from virtual data and

establishing a mutual reinforcement (MR) pipeline between learning and opti-

mization. In particular, we train a scale-aware disparity network and an auxiliary

pose network using both virtual and real sequences. The virtual-to-real domain

gap is bridged by mapping both virtual and real images into a shared feature

space through adversarial training. Thanks to the known stereo baseline and

ground-truth disparity maps in the virtual dataset, the predicted disparities are

scale-aware and are fed into a direct VO system for depth initialization and the
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construction of an extra virtual stereo optimization objective. In contrast to pre-

vious works that have focused exclusively on the unidirectional information flow

from learning to optimization, we establish the MR pipeline by using the more

accurate trajectories from the optimization backend as an auxiliary regulariza-

tion signal to supervise the learning process. In this way, we allow the disparity

network and the VO backend to be trained and optimized in a mutually rein-

forced manner. We demonstrate the effectiveness of the proposed framework on

virtual KITTI2 (Cabon et al., 2020) and KITTI (Geiger et al., 2013) w.r.t. both

accuracy and robustness.

3.2 Related Work

3.2.1 Scale Ambiguity of Monocular VO Systems

Supervised pose regression methods predict absolute scale-aware motions by

training the networks with ground-truth camera poses (Wang et al., 2017; Xue

et al., 2019). However, the accuracy of pure-learning methods suffers due to

the insufficient utilization of the well-established geometric constraints. Alter-

natively, another line of work imposes scale information on depth prediction in-

stead, taking into account that depth and camera motion share the same scale. As

such, CNN-SLAM (Tateno et al., 2017) integrates learnt depth maps which are

trained with ground-truth depth labels into LSD-SLAM (Engel et al., 2014) for

depth initialization. In the absence of ground-truth depth values, DVSO (Yang

et al., 2018) and D3VO (Yang et al., 2020) extract the absolute scale by learn-

ing to predict both left and right disparities using stereo training sequences. The

learnt disparities are then used to construct a virtual stereo optimization term for

direct VO systems. Our method instead targets the situations where no stereo

images are available in the real-world training dataset, and makes the following
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contributions: (1) Bridging the domain gap between virtual and real-world im-

ages to introduce the scale information learnt from the virtual world to real ap-

plications; and (2) Addressing the suboptimality issue from the separation of the

optimization backend and the learning process by establishing the MR pipeline

to allow bidirectional information flow between learning and optimization.

Local reprojected depth regularization provides an alternative approach to en-

sure the scale consistency using only monocular images (Bian et al., 2019;

Zhao et al., 2020). Nevertheless, the accuracy of these methods is still in-

ferior to DeepVO (Wang et al., 2017) and DVSO (Yang et al., 2018). DF-

VO (Zhan et al., 2020) incorporates this idea into an indirect VO system, utiliz-

ing a scale-consistent depth network for initialization and an optical flow net-

work for building 2D-2D correspondences to boost the performance. In com-

parison, our method does not require optical flow prediction, and thus is simpler

during inference. Additionally, we address the suboptimality issue by incorpo-

rating the mutual reinforcement pipeline.

3.2.2 Domain Adaptation for Depth Estimation

Atapour et al. (Atapour-Abarghouei and Breckon, 2018) and T2Net (Zheng

et al., 2018) formulated this problem as image translation from real images to

the synthetic domain, and trained the depth network on synthetic datasets with

ground-truth supervision. AdaDepth (Kundu et al., 2018) used the adversar-

ial approach to align the feature distributions of source and target domains and

thus reduced the domain gap. The more recent GASDA (Zhao et al., 2019) ex-

plored the setting in which stereo data are available in the real domain and added

the stereo photometric loss to leverage this information. A joint synthetic-to-

real and real-to-synthetic translation training scheme is proposed to enhance the

results. Apart from the translation-based methods, SharinGAN (PNVR et al.,

2020) mapped both virtual and real images to a shared feature space to relieve

the difficulty in learning direct image translators. We follow the idea of learning
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a shared domain while a lightweight network structure and more informative

losses are adopted (Godard et al., 2019). Additionally, SharinGAN also uses

real stereo data during training, which is not required in our setting.

3.2.3 Supervision from Geometric VO Methods

DVSO (Yang et al., 2018) directly used the depth results from StereoDSO (Wang

et al., 2017) for supervision. Klodt and Vedaldi (2018) used both depth and pose

results from ORB-SLAM2 (Mur-Artal and Tardós, 2017), as well as the tempo-

ral photometric consistency loss during training. Andraghetti et al. (2019) pro-

posed a sparsity-invariant autoencoder to process the sparse depth maps from

ORB-SLAM2 and extract higher-level features. Tosi et al. (2019) instead used

the SGM stereo matching algorithm to obtain the proxy depth for supervsion.

Similar to our method, Tiwari et al. (2020) proposed a self-improving loop that

first performs the RGB-D version of ORB-SLAM2 with depth prediction from

monodepth2 (Godard et al., 2019) and then uses SLAM results as supervisory

signals to finetune the depth network. Notably, our method incorporates a do-

main adaptation (DA) module to learn scale-aware disparities from virtual data,

which are then formulated as a virtual stereo term for the optimization backend,

therefore providing the absolute scale and allowing bidirectional information

flow between learning and optimization.

3.3 Methodology

In this section, we present the technical details of VRVO. We first revisit the

fundamentals of direct VO methods and the scale inconsistency problem. Then

we turn to how VRVO solves this problem by adapting virtual scale information

to real domain and addressing the suboptimality issue using the mutual rein-

forcement between learning and optimization.



3.3 METHODOLOGY 63

3.3.1 Direct VO Methods

VO aims at predicting the 6-DOF relative camera pose T = [R, t] from consec-

utive images. Direct methods formulate this problem as optimizing the photo-

metric error between an image and its warped counterpart. Given consecutive

frames I and I ′, we optimize the following objective:

T ∗ = argmin
[R,t]

N∑
i=1

L(I ′(ϕ(KRK−1pi +
Kt

zi
)), I(pi)), (3.1)

where K and N denote the camera intrinsics and the number of utilized pixels,

pi and zi are the coordinate and corresponding depth of the selected pixel in I ,

and R ∈ SO(3) and t ∈ R3 are the rotation matrix and the translation vector

from I to I ′, respectively. ϕ(·) and L denote the depth normalization and the

loss function.

Equation 3.1 implies that t and zi are actually valid up to a scaling factor. Since

for VO systems we usually conduct local optimization over limited keyframes

to achieve real-time performance, this scale ambiguity will result in inconsistent

predictions over long trajectories, as illustrated in Fig. 3.1(b).

3.3.2 Scale-Aware Learning from Virtual Data

Though it remains non-trivial to address the scale inconsistency problem solely

from monocular training sequences, modern photorealisitic simulation engines

open new opportunities by providing cost-effective training data with ground-

truth labels in the virtual domain. Given that depth and translation share the

same scale, we formulate scale extraction from the virtual world as the learning

of a scale-aware disparity networkMD which is then embedded into a direct VO

system Engel et al. (2017) to provide scale constraints. The overall framework

of our domain adaptation module is presented in Fig. 3.2
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Figure 3.2. The overall pipeline and the losses of our domain adaptation module. The
superscripts {r, v} denote real domain and virtual domain, respectively and subscripts
{L,R} denote left image and right image, respectively. We reconstruct IrL,warped and
IvL,warped from temporally adjacent IrL and IvL frames using the predicted left disparities
Dr

L and Dv
L and differentiable backward warping. We extract the absolute scale infor-

mation from the virtual domain by (1) using the ground-truth depths Dv
L,gt to provide

supervision, and (2) reconstructing I ′vL,warped from the stereo image IvR using the known
stereo baseline T v

baseline to provide the stereo photometric consistency loss Lv
sc.

Adversarial Training for Domain Adaptation. The challenge of leveraging

virtual data lies in the domain shift from virtual to real. To address this issue,

we first build an end-to-end domain adaptation module that jointly learns the

scale-aware disparities and narrows the domain gap for the network to work on

real images. Specifically, given monocular real sequences IrL and stereo virtual

sequences {IvL, IvR} with computer generated ground-truth baseline tvb and left

disparity maps Dv
L,gt, a shared encoder MS is trained to project images from

both domains into a shared feature space, which is then fed into MD for dis-

parity prediction. We adopt the adversarial training strategy proposed in PNVR

et al. (2020) to align the projected features, where a discriminatorMadv is used

to distinguish the projected features from two domains, by optimizing the fol-

lowing adversarial loss:

min
MS

max
Madv

Ladv − λgLgp + Ltask + λrLrec, (3.2)

where Ladv is a WGAN-alike loss (Arjovsky et al., 2017) modified for shared

feature encoding, Lgp is the gradient penalty (Gulrajani et al., 2017) to obtain

more stable gradients for trainingMadv, Lrec is the reconstruction loss to avoid a
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trivial solution ofMS , and Ltask is the loss for scale-aware disparity prediction

which will be explained later. Of note is that {Ltask, Lrec} are only used for

updatingMS in this stage.

Ladv = EIrL
[Madv(MS(I

r
L))]− EIvL

[Madv(MS(I
v
L))], (3.3)

Lgp = (||∇F̃S
Madv(F̃S)||2 − 1)2, (3.4)

F̃S = ϵMS(I
r
L) + (1− ϵ)MS(I

v
L), ϵ ∼ Uniform[0, 1], (3.5)

Lrec = ||IrL −MS(I
r
L)||22 + ||IvL −MS(I

v
L)||22. (3.6)

Scale-Aware Disparity Prediction. We train a disparity networkMD and an

auxiliary pose network MP using both unsupervised and supervised training

losses from real and virtual sequences:

min
MD,MP

Ltask = λp(L
r
pc + Lv

pc) + λs(L
r
s + Lv

s)

+λgtL
v
gt + λscL

v
sc, (3.7)

where {λp, λs, λgt, λsc} denote the weights for the corresponding loss terms.

{Lr
pc, L

v
pc} and {Lr

s, L
v
s} denote the unsupervised photometric consistency losses

and the disparity smoothness losses for both real and virtual images. WLOG,

we omit the superscripts r and v for simplicity:

Lpc =
1

N

N∑
i=1

min
δ∈{−1,1}

L(IL(pi), Iδ(ϕ(KRδK
−1pi +

Ktδdi
fxtvb

))), (3.8)

L(IL, Iδ) = α
1− SSIM(IL, Iδ)

2
+ (1− α)||IL − Iδ||1, (3.9)

Ls =
1

N

∑
x,y

∑
a∈{x,y}

|∇aDL(x, y)|e−|∇aIL(x,y)|, (3.10)

where Iδ denotes the neighbor of IL with index difference δ. fx = K[0, 0]

denotes the focal length along x axis. [Rδ, tδ] = MP ([IL, Iδ]) and SSIM(·)

denote the predicted relative pose from IL to Iδ and the structural similarity

index (Wang et al., 2004), respectively. DL = MD(MS(IL)) represents the
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predicted disparity map where di is the disparity of pixel pi. Of note is that tvb is

the baseline in the virtual stereo setting, which is used for both Lr
pc and Lv

pc to

ensure the scale consistency between virtual and real depth predictions.

To empower the network with scale-aware ability, we further incorporate the

supervised disparity loss Lv
gt and the stereo consistency loss Lv

sc into (7):

Lv
gt = ||MD(MS(I

v
L))−Dv

L,gt||1, (3.11)

Lv
sc =

1

N

N∑
i=1

L(IvL(pi), IvR(ϕ(pi + [di, 0, 0]
T ))), (3.12)

where Dv
L,gt denotes the ground-truth disparity map and IvR denotes the stereo

counterpart of IvL. It is worth noting that (12) implies a fixed baseline tvb in the

virtual domain, which is explicitly used in (8) for Lr
pc to inform the depth scale.

3.3.3 Mutual Reinforcement for Unified VO

One limitation of embedding learnt depths into classical VO methods is that

learning and optimization are not jointly optimized due to the indifferentiable

optimization backend, resulting in a suboptimal disparity network. In this chap-

ter, we unify learning and optimization by proposing a mutual reinforcement

(MR) pipeline that finetunes the networks using the more accurate trajectories

from the backend as supervision, thereby alleviating the suboptimality problem.

We present the pipeline of the MR module in Fig. 3.3.

3.3.3.1 Forward Reinforcement

We first use the scale-ware disparity predictions for depth initialization in a

SOTA direct VO system Engel et al. (2017). Following Yang et al. (2018), a
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Figure 3.3. The pipeline of our mutual reinforcement module. The superscript r de-
note real domain and the subscripts {L,R} denote left and right images, respectively.
T r,∗
L,(i−1,i) is the relative camera motion from (i − 1)th frame to ith frame in the real

domain, predicted by the optimization-based VO backend. IrL,warped and Lr,∗
pc are the

reconstructed frame and the corresponding photometric consistency loss for backward
reinforcement. During forward reinforcement, we generate right disparities Dr

R from
Dr

L using forward warping. Dr
R is then used to provide depth initialization and the vir-

tual stereo energy term for the optimization-based backend.

virtual stereo energy Evs is incorporated into optimization to provide scale con-

straints.

Evs =
k∑

i=1

ωi||IrL(ϕ(psi + [Dr
R(p

s
i ), 0, 0]

T ))− IrL(pi)||γ, (3.13)

psi = ϕ(pizi + [fxt
v
b , 0, 0]

T ), (3.14)

where zi and || · ||γ denote the pixel depth to be optimized in the backend and

the Huber norm with threshold γ, respectively. ωi denotes the energy weight

based on image gradients and Dr
R denotes the disparity map of the virtual stereo

counterpart, which is generated by forward warping the predicted left disparity

Dr
L =MD(MS(I

r
L)).

The Jacobian of the virtual stereo objective. Considering the virtual stereo

objective of a point p:

E†p
i = wp||Ii[p† + [DR(p†) 0]T ]− Ii[p]||r, (3.15)
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p† = K(IK−1(p, dp) + tb). (3.16)

Common optimization methods like the Gauss-Newton method usually requires

the derivative of Ii[p† + [DR(p†) 0]T ] − Ii[p] w.r.t. dp. Since ∂Ii[p]/∂dp = 0,

we only need to consider the derivative of the former term. Let p∗ = p† +

[DR(p†) 0]T , then we have:

∂Ii[p
∗]

∂dp
=
Ii[p

∗]

∂p∗
· ∂[p

† + [DR(p†) 0]T ]

∂dp
(3.17)

Ii[p
∗]

∂p∗
=

[
∂Ii
∂p∗x

∂Ii
∂p∗y

]
, (3.18)

where we use local image gradients to approximate Equation 3.18. The second

derivative is derived as:

∂[p† + [DR(p†) 0]T ]

∂dp
=
∂p†

∂dp
+ [

∂DR(p†)

∂dp
0]T (3.19)

=

∂p†x
∂dp
∂p†y
∂dp

+

∂DR(p†)
∂dp

0

 , (3.20)

∂DR(p†)

∂dp
=

[
∂DR(p†)

∂p†x

∂DR(p†)

∂p†y

]∂p†x
∂dp
∂p†y
∂dp

 . (3.21)

By inserting Equation 3.21 into Equation 3.20, we have:

∂[p† + [DR(p†) 0]T ]

∂dp
=

∂p†x
∂dp
∂p†y
∂dp

+

∂DR(p†)

∂p†x

∂p†x
∂dp

+ ∂DR(p†)

∂p†y

∂p†y
∂dp

0

 (3.22)

=

(1 + ∂DR(p†)

∂p†x
)∂p

†
x

∂dp
+ DR(p†)

∂p†y

∂p†y
∂dp

∂p†y
∂dp

 (3.23)

=

1 + ∂DR(p†)

∂p†x

∂DR(p†)

∂p†y

0 1

∂p†x
∂dp
∂p†y
∂dp

 . (3.24)
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Therefore, by inserting Equation 3.24 and Eq. 3.18 into Equation 3.17, we have:

∂Ii[p
∗]

∂dp
=

[
∂Ii
∂p∗x

∂Ii
∂p∗y

]1 + ∂DR(p†)

∂p†x

∂DR(p†)

∂p†y

0 1

∂p†x
∂dp
∂p†y
∂dp

 (3.25)

=
[
(1 + ∂DR(p†)

∂p†x
) ∂Ii
∂p∗x

∂DR(p†)

∂p†y

∂Ii
∂p∗x

+ ∂Ii
∂p∗y

]∂p†x
∂dp
∂p†y
∂dp

 , (3.26)

p∗ = p† + [DR(p†) 0]T . (3.27)

3.3.3.2 Backward Reinforcement

Since the optimized depth results from the backend VO system are signifi-

cantly more accurate than the initial ones, we use them to provide informa-

tive supervision to further finetune the networks. Instead of regularizing MD

with the sparse depths from the backend, we use the optimized camera motion

T r,∗
L = [R∗, t∗] to construct a photometric regularization loss on the real domain

to achieve dense supervision overMD andMP :

Lr,∗
pc =

1

N

N∑
i=1

min
δ
L(IrL(pi), Irδ (ϕ(KR∗

δK
−1pi +

Kt∗δdi
fxtvb

))), (3.28)

where δ ∈ {−1, 1}. Since the t∗δ from the optimization backend are already

scale-consistent, we do not use virtual data in this stage. Specifically, we fix

{MS,Madv} and only update {MD,MP} using real domain sequences.

By introducing the domain adaptation module and the MR module, then the

overall algorithm of VRVO is given in Algorithm 1.

3.4 Experiments

We evaluate the effectiveness of VRVO on vKITTI2 (Cabon et al., 2020) and

KITTI odometry pGeiger et al. (2013) autonomous driving datasets. KITTI
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Algorithm 1 The training pipeline of VRVO

Require: Loss weights {λ∗p, λk|k ∈ {g, r, p, s, gt, sc}}; Adam optimizer G with
hyperparamers {α, β1, β2}.

Require: Real domain: Monocular sequences IrL.
Require: Virtual domain: Stereo sequences {IvL, IvR};
Require: Virtual domain: Baseline tvb ; Left disparities Dv

L,gt.
1: Initialize network parameters. {wn|n ∈ {adv, S,D, P}}
2: for Ntr iterations do
3: Sample a minibatch from {IrL, IvL, IvR, Dv

L,gt}
4: UpdateMadv: wadv ← G(∇wadv

− Ladv + λgLgp).
5: for ks steps do
6: UpdateMS: wS ← G(∇wS

Ladv + Ltask + λrLrec).
7: end for
8: UpdateMD,MP : wD, wP ← G(∇wD,wP

Ltask).
9: end for

10: for kf steps do
11: Predict left disparities Dr

L of IrL usingMD.
12: Generate right disparities Dr

R by forward warping Dr
L.

13: Generate camera motions T r,∗
L of IrL using an optimization-based direct

VO system by
(1) Initializing depth values using Dr

L, and
(2) Adding the virtual stereo energy Evs.

14: for Nft iterations do
15: Sample a minibatch from {IrL, IvL, IvR, Dv

L,gt, T
r,∗
L }.

16: UpdateMD,MP : wD, wP ← G(∇wD,wP
Ltask + λ∗pL

r,∗
pc ).

17: end for
18: end for

odometry dataset contains 11 sequences collected from real-world driving sce-

narios with ground-truth camera motion for evaluation, and vKITTI2 provides

photorealistic reconstruction of KITTI scenarios using the Unity game engine,

where rich ground-truth labels such as camera pose, optical flow, and depth are

available. Following the evaluation scheme in (Zhan et al., 2020), we test the

results on sequences 09 and 10 and use the remaining monocular sequences for

training, which are randomly split into 19,618 training pairs [IrL, I
r
−1, I

r
+1] and

773 validation pairs. For vKITTI2, we use all stereo sequences for training, re-

sulting in 20,930 training pairs [IvL, I
v
−1, I

v
+1, I

v
R]. Images from both domain are

cropped to 640×192 during training and inference.
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3.4.1 Implementation Details

We implement all networks in PyTorch (Steiner et al., 2019).MS,MD andMP

all adopt the lightweight monodepth2 (Godard et al., 2019) network structure

which uses ResNet18 (He et al., 2016) as the backbone encoder. We first pretrain

{MD,MP} on vKITTI2 using the raw images as inputs, and pretrainMS as a

self-encoder using only Lrec. As demonstrated in Algorithm 1, we then jointly

train the networks by Ntr = 150k iterations with ks = 5, followed by kf = 5

MR steps. At each MR step, we run one epoch over the training sequences

to updateMD andMP while fixingMS andMadv. The learning rate is set to

10−4 for domain adaptation and 10−3 for mutual reinforcement to allow jumping

out of local convergence basin. {λg, λr} are both set to 10, {λp, λgt, λsc} are all

set to 1, and λs is set to 0.1 during training. λ∗p is set to 0.01 and we also

conduct ablation study on the influence of λ∗p. The final direct VO system that

uses predicted disparities for depth initialization and the virtual stereo objective

is built upon the C++ implementation of DSO (Engel et al., 2017).

3.4.2 Visual Odometry Results

We compare VRVO with classical optimization-based methods DSO (Engel

et al., 2017) and ORB-SLAM2 (Mur-Artal and Tardós, 2017) (with and with-

out loop closure), end-to-end unsupervised learning methods SfMLearner (Zhou

et al., 2017), Depth-VO-Feat (Zhan et al., 2018), SC-SfMLearner (Bian et al.,

2019), and WithoutPose (Zhao et al., 2020), online learning methods OnlineAda-

I (Li et al., 2020), OnlineAda-II (Li et al., 2021), and DOC+ (Zhang et al.,

2021a), and the SOTA hybrid method DF-VO (Zhan et al., 2020). Results of

two related works DVSO (Yang et al., 2018) and D3VO (Yang et al., 2020) are

not presented here since KITTI odometry sequences 09 and 10 are used in their

training set and both methods require stereo images in the real domain during the

training phase. Following (Zhan et al., 2020), we report the average translation
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error terr (%) and rotation error rerr (◦/100m) over all sub-sequences of lengths

{100m, 200m, ..., 800m}, and the absolute trajectory error ATE (m). Due to the

stochasticity of optimization, we run our direct backend five times and report

the mean results. Since monocular training sequences lack absolute scale in-

formation, we apply a scale-and-align (7DOF) transformation to the results as

suggested in (Zhan et al., 2020).

Table 3.1. Evaluation results on KITTI Odometry sequences 09 and 10. Train denotes
the training data required in the real domain, where M and S denote monocular and
stereo sequences respectively. Online denotes whether online parameter funetuning is
required using test data. T ,O,MD andMF denote the training mode, whether trained
online or not and whether the depth network and the optical flow network are required,
respectively. The superscript ∗ and the bold font denote the best results among all
evaluated methods, and offline methods that do not require stereo training sequences in
real domain and the optical flow networkMF , respectively. The units of terr, rerr, and
ATE are %, ◦/100m and m, respectively. The results of ORB-SLAM2 (both w/LC and
w/o LC) are from Mur-Artal and Tardós (2017).

Sequence 09 Sequence 10
Methods T O MD MF terr rerr ATE terr rerr ATE

DSO Engel et al. (2017) - - - - 15.91 0.20∗ 52.23 6.49 0.20∗ 11.09
ORB-SLAM2 (w/o LC) - - - - 9.30 0.26 38.77 2.57 0.32 5.42
ORB-SLAM2 (w/ LC) - - - - 2.88 0.25 8.39 3.30 0.30 6.63

WithoutPose Zhao et al. (2020) M ✓ ✓ 6.93 0.44 - 4.66 0.62 -
DF-VO Zhan et al. (2020) M ✓ ✓ 2.47 0.30 11.02 1.96 0.31 3.37∗

DF-VO Zhan et al. (2020) S ✓ ✓ 2.61 0.29 10.88 2.29 0.37 3.72
DOC+ Zhang et al. (2021a) S ✓ ✓ 2.02 0.61 4.76 2.29 1.10 3.38
OnlineAda-I Li et al. (2020) M ✓ ✓ 5.89 3.34 - 4.79 0.83 -
OnlineAda-II Li et al. (2021) M ✓ ✓ ✓ 1.87 0.46 - 1.93∗ 0.30 -

SfMLearner Zhou et al. (2017) M ✓ 11.32 4.07 26.93 15.25 4.06 24.09
Depth-VO-Feat Zhan et al. (2018) M ✓ 11.89 3.60 52.12 12.82 3.41 24.70
SC-SfMLearner Bian et al. (2019) M ✓ 7.64 2.19 15.02 10.74 4.58 20.19

DPC (w/o LC) Wagstaff et al. (2020) M ✓ 2.82 0.76 - 3.81 1.34 -
DPC (w/ LC) Wagstaff et al. (2020) M ✓ 2.13 0.80 - 3.48 1.38 -

ours (w/o MR) M ✓ 1.81 0.30 5.96 2.78 0.38 6.26
ours (w/ MR) M ✓ 1.55∗ 0.28 4.39∗ 2.75 0.36 6.04

As summarized in Table 3.1, our method achieves the best terr and ATE on

sequence 09, and outperforms learning-based methods w.r.t. rerr on sequence

09 as well. Though DSO achieves the best rerr on both sequences 09 and 10,

it suffers from the scale inconsistency problem, resulting in unsatisfactory terr

and ATE. Besides, the performance of our methods on sequence 10 surpasses

all methods that train with monocular real sequences and do not require optical

flow prediction (SfMLearner, Depth-VO-Feat, SC-SfMLearner, DPC), and is
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highly comparable with methods that utilize online finetuning, stereo training

data, or an extra optical flow network.

Figure 3.4. Predicted trajectories on KITTI odometry sequence 09 (Top row) and se-
quence 10 (Bottom rows). The results against learning-based and geometric methods
are displayed separately.

The visualization results are presented in Fig. 3.4. By leveraging the scale infor-

mation learnt from the virtual domain, we significantly reduce the scale incon-

sistency throughout the whole trajectory. Notably, we apply the same backend
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hyperparameter set to all sequences, which may explain the performance differ-

ence between sequences 09 and 10. The design of a better and adaptive hyper-

parameter selection scheme presents an interesting future research direction.

Trajectory and Reconstructed Point Clouds of VRVO on KITTI Seq. 10

Trajectory and Reconstructed Point Clouds of DSO on KITTI Seq. 10

Figure 3.5. The estimated trajectories and reconstructed point clouds from DSO (top
row) and VRVO (bottom row). While massive noises are observed in the reconstructed
point clouds from DSO, VRVO produces much cleaner and detailed reconstruction of
the environment, such as the house located within the area enclosed by the yellow box.

In addition to the visualization results on KITTI sequence 09 in Fig. 3.1, we

further the results on KITTI sequence 10 in Fig. 3.5 for better illustration. While

massive noises are observed in the reconstructed point clouds from DSO, VRVO

produces much cleaner and detailed reconstruction of the environment, such as

the house located within the area enclosed by the yellow box.

3.4.3 Ablation Studies

We further conduct ablation studies to investigate the influence of (1) the virtual

domain information, (2) the domain adaptation module, and (3) the mutual rein-

forcement module. WLOG, we report results on sequence 09 in Table 3.2. We
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Table 3.2. Ablation studies on KITTI Odometry sequence 09. V and R denote whether
the virtual and the real data are used for training, respectively. The bold metrics are
reported in TABLE 3.1.

Training DA MR λ∗p terr (%) rerr (◦/100m)
V - 5.740±1.307 0.301±0.026
R - 11.069±0.139 0.215±0.003

V+R ✓ - 1.808±0.368 0.304±0.004
V+R ✓ ✓ 0 2.024±0.121 0.283±0.002
V+R ✓ ✓ 0.001 1.782±0.011 0.296±0.002
V+R ✓ ✓ 0.01 1.546±0.021 0.280±0.002
V+R ✓ ✓ 0.1 2.918±0.094 0.297±0.007

run VRVO five times at different settings and report both the means and stan-

dard errors of terr and rerr. As expected, terr of VRVO using only real domain is

large due to the scale inconsistency problem. While using only virtual data with

scale-aware ground-truth and baseline for training achieves a better terr, a large

standard error is observed due to the virtual-to-real domain gap. Besides, the

terr of VRVO using only virtual domain is much worse than the domain adap-

tation counterpart (the third row), showing that the proposed domain adaptation

module largely improves terr by introducing the learnt scale information into

the optimization backend. Nevertheless, the standard error is still large, poten-

tially due to the suboptimality issue caused by the inherent separation between

the learning process and the optimization backend. By leveraging the proposed

MR module, the standard error can be reduced significantly while the accuracy

is also improved. By setting λ∗p = 0, we show that the performance gain is not

achieved by further training, which instead leads to overfitting and degraded re-

sults. Besides, since the optimization results may still contain errors, a large λ∗p
like 0.1 guides the network to overfit the intrinsic errors from the direct backend.

We thus determine λ∗p as 0.01 for the MR stage.

In addition, VRVO learns an absolute scale which is beyond a consistent one.

The scaling ratio of the medians between the predicted depths and the ground-

truth on sequences 09 and 10 is 1.011 for our model with MR. We further test
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the generalizability of the depth network on Make3D (Saxena et al., 2008) and

achieve a scaling ratio of 1.594, indicating that the scale-awareness can be gen-

eralized to unseen datasets. The degraded performance may come from the

different camera intrinsics, which presents an interesting future research topic.

Figure 3.6. Qualitative depth predictions before the MR refinement (middle row) and
after the MR refinement (bottom row). The original images are provided in the top row.

Figure 3.7. Qualitative depth predictions of VRVO on KITTI Seq.10.
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Depth improvement from the MR module. In addition to odometry perfor-

mance, the proposed MR module also enables the depth network to generate

more fine-grained depth predictions. Qualitative results are provided in Fig. 3.6.

After the MR refinement, the quality of the depth predictions also improves and

more texture details especially in the trees and the leaves areas can be recovered.

More qualitative depth prediction results on KITTI sequence 10 are presented

in Fig. 3.7 for better illustration.

3.5 Conclusion

In this chapter, we present VRVO, a novel scale-consistent monocular VO sys-

tem that only requires monocular real images as well as easy-to-obtain virutal

data for training. It can effectively extract the scale information from the vir-

tual data and transfer it to the real domain via a domain adaptation module and

a mutual reinforcement module. Specifically, the former module learns scale-

aware disparity maps while the latter one establishes bidirectional information

flow between the learning process and optimization backend. Compared with

SOTA monocular VO systems, our method is simpler yet achieves better results.



CHAPTER 4

Scale-Aware Unsupervised Monocular Depth Estimation by

Integrating IMU Dynamics

In Chapter 3, we have shown that the scale ambiguity problem of monocular

VO can be resolved by providing classical geometric systems with scale-aware

depth information. Since modern sensor suite usually contains multiple sen-

sors including camera and IMU which provides scale information, in this chap-

ter we explore the potential use of IMU to achieve unsupervised scale-aware

depth estimation, which provides a practical solution to obtain the depths re-

quired by monocular VO systems as mentioned above. Unsupervised monocu-

lar depth and ego-motion estimation has drawn extensive research attention in

recent years. Although Current unsupervised monocular depth and ego-motion

estimation methods have reached a high up-to-scale accuracy, they usually fail

to learn the true scale metric due to the inherent scale ambiguity from training

with monocular sequences. In this chapter, we tackle this problem and propose

DynaDepth, a novel scale-aware framework that integrates information from

vision and IMU motion dynamics. Specifically, we first propose an IMU photo-

metric loss and a cross-sensor photometric consistency loss to provide dense su-

pervision and absolute scales. To fully exploit the complementary information

from both sensors, we further derive a differentiable camera-centric extended

Kalman filter (EKF) to update the IMU preintegrated motions when observing

visual measurements. In addition, the EKF formulation enables learning an ego-

motion uncertainty measure, which is non-trivial for unsupervised methods. By

leveraging IMU during training, DynaDepth not only learns an absolute scale,

78
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but also provides a better generalization ability and robustness against vision

degradation such as illumination change and moving objects. We validate the

effectiveness of DynaDepth by conducting extensive experiments and simula-

tions on the KITTI and Make3D datasets.

4.1 Introduction

Monocular depth estimation is a fundamental computer vision task which plays

an essential role in many real-world applications such as autonomous driving,

robot navigation, and virtual reality (Taketomi et al., 2017; Khan et al., 2020;

Zhang and Tao, 2020). Classical geometric methods resolve this problem by

leveraging the geometric relationship between temporally contiguous frames

and formulating depth prediction as an optimization problem (Engel et al., 2014;

Mur-Artal et al., 2015; Engel et al., 2017). While geometric methods have

achieved good performance, they are sensitive to either textureless regions or

illumination changes. The computational cost for dense depth prediction also

limits their practical use. Recently deep learning techniques have reformed this

research field by training networks to predict depth directly from monocular im-

ages and designing proper losses based on ground-truth depth labels or geomet-

ric depth clues from visual data. While supervised learning methods achieve the

best performance (Eigen et al., 2014; Liu et al., 2015; Fu et al., 2018; Bhat et al.,

2021; Zhang et al., 2022a), the labour cost for collecting ground-truth labels

prohibits their use in real-world. To address this issue, unsupervised monocular

depth estimation has drawn a lot of research attention (Zhou et al., 2017; Godard

et al., 2019), which leverages the photometric error from backwarping.

Although unsupervised monocular depth learning has made great progress in

recent years, there still exist several fundamental problems that may obstruct

its usage in real-world. First, current methods suffer from the scale ambiguity

problem since the backwarping process is equivalent up to an arbitrary scaling
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factor w.r.t. depth and translation. While current methods are usually eval-

uated by re-scaling each prediction map using the median ratio between the

ground-truth depth and the prediction, it is difficult to obtain such median ratios

in practice. Secondly, it is well-known that the photometric error is sensitive

to illumination change and moving objects, which violate the underlying as-

sumption of the backwarping projection. In addition, though uncertainty has

been introduced for the photometric error map under the unsupervised learning

framework (Klodt and Vedaldi, 2018; Yang et al., 2020), it remains non-trivial to

learn an uncertainty measure for the predicted ego-motion, which could further

benefit the development of a robust and trustworthy system.

In this chapter, we tackle the above-mentioned problems and propose DynaDepth,

a novel scale-aware monocular depth and ego-motion prediction method that ex-

plicitly integrates IMU motion dynamics into the vision-based system under a

camera-centric extended Kalman filter (EKF) framework. Modern sensor suites

on vehicles that collect data for training neural networks usually contain mul-

tiple sensors beyond cameras. IMU presents a commonly-deployed one which

is advantageous in that (1) it is robust to the scenarios when vision fails such

as in illumination-changing and textureless regions, (2) the absolute scale met-

ric can be recovered by inquiring the IMU motion dynamics, and (3) it does

not suffer from the visual domain gap, leading to a better generalization ability

across datasets. While integrating IMU information has dramatically improved

the performance of classical geometric odometry and simultaneous localization

and mapping (SLAM) systems (Mourikis and Roumeliotis, 2007; Leutenegger

et al., 2015; Qin et al., 2018), its potential in the regime of unsupervised monoc-

ular depth learning is much less explored, which is the focus of this work.

Specifically, we propose a scale-aware IMU photometric loss which is con-

structed by performing backwarping using ego-motion integrated from IMU

measurements, which provides dense supervision by using the appearance-based

photometric loss instead of naively constraining the ego-motion predicted by
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Figure 4.1. (a) The overall framework of DynaDepth. Îvist and ÎIMU
t denote the recon-

structed target frames from the source frame Is. Detailed notations of other terms are
given in Chapter 4.3. IMU dynamics is introduced into the depth estimation framework
through Îvist and ÎIMU

t to provide absolute scale information and external data for more
generalizable and robust state estimation. In addition, a differentiable camera-centric
extended kalman-filter (EKF) is derived for sensor fusion and ego-motion uncertainty
estimation. (b) Histograms of the scaling ratios between the medians of depth predic-
tions and the ground-truth. (c) Generalization results on Make3D using models trained
on KITTI with (w/) and without (w.o/) IMU.

networks. To accelerate the training process, we adopt the IMU preintegration

technique (Lupton and Sukkarieh, 2011; Forster et al., 2015) to avoid redun-

dant computation. To correct the errors that result from illumination change

and moving objects, we further propose a cross-sensor photometric consistency

loss between the synthesized target views using network-predicted and IMU-

integrated ego-motions, respectively. Unlike classical visual-inertial SLAM sys-

tems that accumulate the gravity and the velocity estimates from initial frames,

these two metrics are unknown for the image triplet used in unsupervised depth

estimation methods. To address this issue, DynaDepth trains two extra light-

weight networks that take two consecutive frames as input and predict the camera-

centric gravity and velocity during training.

Considering that IMU and camera present two independent sensing modalities

that complement each other, we further derive a differentiable camera-centric

EKF framework for DynaDepth to fully exploit the potential of both sensors.

When observing new ego-motion predictions from visual data, DynaDepth up-

dates the preintegrated IMU terms based on the propagated IMU error states

and the covariances of visual predictions. The benefit is two-fold. First, IMU is

known to suffer from inherent noises, which could be corrected by the relatively
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accurate visual predictions. Second, fusing with IMU under the proposed EKF

framework not only introduces scale-awareness, but also provides an elegant

way to learn an uncertainty measure for the predicted ego-motion, which can be

beneficial for recently emerging research methods that incorporate deep learn-

ing into classical geometric SLAM systems to achieve the synergy of learning,

geometry, and optimization.

Our overall framework is shown in Fig. 4.1. In summary, our contributions are:

• We propose an IMU photometric loss and a cross-sensor photometric

consistency loss to provide dense supervision and absolute scales;

• We derive a differentiable camera-centric EKF framework for sensor

fusion to fully exploit the complementary information between the

camera and the IMU sensors;

• We show that DynaDepth benefits (1) the learning of the absolute scale,

(2) the generalization ability across different datasets, (3) the robust-

ness against vision degradation such as illumination change and mov-

ing objects, and (4) the learning of an ego-motion uncertainty measure,

which are also supported by our extensive experiments and simulations

on the KITTI and the Make3D datasets.

4.2 Related Work

4.2.1 Unsupervised Monocular Depth Estimation

Unsupervised monocular depth estimation has drawn extensive research atten-

tion recently (Zhou et al., 2017; Mahjourian et al., 2018; Godard et al., 2019),

which uses the photometric loss by backwarping adjacent images. Recent works

improve the performance by introducing multiple tasks (Yin and Shi, 2018;

Ranjan et al., 2019; Jung et al., 2021), designing more complex networks and

losses (Johnston and Carneiro, 2020; Guizilini et al., 2020; Wang et al., 2021;
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Zhou et al., 2021), and constructing the photometric loss on learnt features (Shu

et al., 2020). However, monocular methods suffer from the scale ambiguity

problem. DynaDepth tackles this problem by integrating IMU dynamics, which

not only provides absolute scale, but also achieves state-of-the-art accuracy even

if only lightweight networks are adopted.

4.2.2 Scale-Aware Depth Learning

Though supervised depth learning methods(Eigen et al., 2014; Fu et al., 2018;

Bhat et al., 2021) can predict depths with absolute scale, the cost of collecting

ground-truth data limits its practical use. To relieve the scale problem, local

reprojected depth consistency loss has been proposed to ensure the scale con-

sistency of the predictions (Bian et al., 2019; Zhao et al., 2020; Zhan et al.,

2020). However, the absolute scale is not guaranteed in these methods. Similar

to DynaDepth, there exist methods that resort to other sensors than monocular

camera, such as stereo camera that allows a scale-aware left-right consistency

loss (Godard et al., 2017, 2019; Zhang et al., 2022c), and GPS that provides

velocities to constrain the ego-motion network (Guizilini et al., 2020; Chawla

et al., 2021). In comparison with these methods, using IMU is beneficial in that

(1) IMU provides better generalizability since it does suffer from the visual do-

main gap, and (2) unlike GPS that cannot be used indoors and cameras that fail

in texture-less, dynamic and illumination changing scenes, IMU is more robust

to the environments.

4.2.3 Visual-Inertial SLAM Systems

The fusion of vision and IMU has achieved great success in classical visual-

inertial SLAM systems (Mourikis and Roumeliotis, 2007; Leutenegger et al.,

2015; Qin et al., 2018), yet this topic is much less explored in learning-based

depth and ego-motion estimation. Though recently IMU has been introduced
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into both supervised (Clark et al., 2017; Chen et al., 2019) and unsupervised (Han

et al., 2019; Shamwell et al., 2019; Wei et al., 2021) odometry learning, most

methods extract IMU features implicitly, while we explicitly utilize IMU dy-

namics to derive explicit supervisory signals. Li and Waslander (2020) and

Wagstaff et al. (2022) similarly use EKF for odometry learning. Ours differs in

that we do not require ground-truth information (Li and Waslander, 2020) or an

initialization step (Wagstaff et al., 2022) to align the velocities and gravities, but

learn these quantities using networks. Instead of expressing the error states in

the IMU frame, we further derive a camera-centric EKF framework to facilitate

the training process. In addition, compared with odometry methods that do not

consider the requirements for depth estimation, we specifically design the losses

to provide dense depth supervision for monocular depth estimation.

4.3 Methodology

Here we present the technical details of DynaDepth. We first revisit the prelim-

inaries of IMU motion dynamics. Then we give the details of camera-centric

IMU preintegration and the two IMU-related losses, i.e., the scale-aware IMU

photometric loss and the cross-sensor photometric consistency loss. Finally, we

present the differentiable camera-centric EKF framework which fuses IMU and

camera predictions based on their uncertainties and complements the limitations

of each other. A discussion on the connection between DynaDepth and classical

visual-inertial SLAM algorithms is also given to provide further insights.

4.3.1 IMU Motion Dynamics

Let {wb
m,a

b
m} and {wb,aw} denote the IMU measurements and the underlying

vehicle angular and acceleration. The superscript b and w denote the vector is

expressed in the body (IMU) frame or the world frame, respectively. Then we

have wb
m = wb+ bg +ng and ab

m = Rbw(a
w + gw)+ ba+na, where gw is the
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gravity in the world frame and Rbw is the rotation matrix from the world frame

to the body frame (Huang, 2019). {bg, ba} and {ng,na} denote the Gaussian

bias and random walk of the gyroscope and the accelerometer, respectively. Let

{pwbt , qwbt} and vw
t denote the translation and rotation from the body frame

to the world frame, and the velocity expressed in the world frame at time t,

where qwbt denotes the quaternion. The first-order derivatives of {p,v, q} read:

˙pwbt = vw
t , v̇w

t = aw
t , and ˙qwbt = qwbt ⊗ [0, 1

2
wbt ]T , where ⊗ denotes the

quaternion multiplication. Then the continuous IMU motion dynamics from

time i to j can be derived as:

pwbj = pwbi + vw
i ∆t+

∫ ∫
t∈[i,j]

(Rwbta
bt − gw)dt2, (4.1)

vw
j = vw

i +

∫
t∈[i,j]

(Rwbta
bt − gw)dt, (4.2)

qwbj =

∫
t∈[i,j]

qwbt ⊗ [0,
1

2
wbt ]Tdt, (4.3)

where ∆t is the time gap between i and j. For the discrete cases, we use the

averages of {w,a} within the time interval to approximate the integrals.

4.3.2 The DynaDepth Framework

DynaDepth aims at jointly training a scale-aware depth network Md and an

ego-motion networkMp by fusing IMU and camera information. The overall

framework is shown in Fig. 4.1. Given IMU measurements between two consec-

utive images, we first recover the camera-centric ego-motion { ˇRckck+1
, ˇpckck+1

}

with absolute scale using IMU motion dynamics, and train two network modules

{Mg,Mv} to predict the camera-centric gravity and velocity. Then a scare-

aware IMU photometric loss and a cross-sensor photometric consistency loss

are built based on the ego-motion from IMU. To complement IMU and camera

with each other, DynaDepth further integrates a camera-centric EKF module,

leading to an updated ego-motion { ˆRckck+1
, ˆpckck+1

} for the IMU-related losses.
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4.3.2.1 IMU Preintegration

IMU usually collects data at a much higher frequency than camera, i.e., be-

tween two image frames there exist multiple IMU records. Since the train-

ing losses are defined on ego-motions at the camera frequency, naive use of

the IMU motion dynamics requires recalculating the integrals at each training

step, which could be computationally expensive. IMU preintegration presents

a commonly-used technique to avoid the online integral computation (Lupton

and Sukkarieh, 2011; Forster et al., 2015), which preintegrates the relative pose

increment from the IMU records by leveraging the multiplicative property of

rotation, i.e., qwbt = qwbi ⊗ qbibt . Then the integration operations can be

put into three preintegration terms which only rely on the IMU measurements

and can be precomputed beforehand: (1) αbibj =
∫ ∫

t∈[i,j](Rbibta
bt)dt2, (2)

βbibj =
∫
t∈[i,j](Rbibta

bt)dt, and (3) qbibj =
∫
t∈[i,j] qbibt ⊗ [0, 1

2
wbt ]Tdt. Since

IMU preintegration is performed in the IMU body frame while the network

predicts ego-motions in the camera fame, we thus establish the discrete camera-

centric IMU preintegrated ego-motion as:

ˇRckck+1
= RcbF−1(qbkbk+1

)Rbc, (4.4)

ˇpckck+1
= Rcbαbkbk+1

+ ˇRckck+1
Rcbpbc −Rcbpbc + ṽck∆tk −

1

2
g̃ck∆t2k,

(4.5)

whereF denotes the transformation from rotation matrix to quaternion. {Rcb,pcb}

and {Rbc,pbc} are the extrinsics between the IMU and the camera frames. Of

note is the estimation of ṽck and g̃ck , which are the velocity and the gravity

vectors expressed in the camera frame at time k.

Classical visual-inertial SLAM systems jointly optimize the velocity and the

gravity vectors, and accumulate their estimates from previous steps. A compli-

cated initialization step is usually required to achieve good performance. For un-

supervised learning where the training units are randomly sampled short-range
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clips, it is difficult to apply the aforementioned initialization and accumulation.

To address this issue, we propose to predict these two quantities directly from

images as well during training, using two extra network modules {Mv,Mg}.

4.3.2.2 IMU Photometric Loss

State-of-the-art visual-inertial SLAM systems usually utilize IMU preintegrated

ego-motions by constructing the residues between the IMU preintegrated terms

and the system estimates to be optimized. However, naively formulating the

training loss as these residues on IMU preintegration terms can only provide

sparse supervision for the ego-motion network and thus is inefficient in terms

of the entire unsupervised learning system. In this work, we propose an IMU

photometric loss LIMU
photo to tackle this problem which provides dense supervisory

signals for both the depth and the ego-motion networks. Given an image I and

its consecutive neighbours {I−1, I1}, LIMU
photo reads:

LIMU
photo =

1

N

N∑
i=1

min
δ∈{−1,1}

L(I(yi), Iδ(ψ(KR̂δK
−1yi +

Kp̂δ

z̃i
))), (4.6)

L(I, Iδ) = α
1− SSIM(I, Iδ)

2
+ (1− α)||I − Iδ||1, (4.7)

where K and N are the camera intrinsics and the number of utilized pixels,

yi and z̃i are the pixel coordinate in image I and its depth predicted by Md,

I(yi) is the pixel intensity at yi, and ψ(·) denotes the depth normalization func-

tion. {R̂δ, p̂δ} denotes the ego-motion estimate from image I to Iδ, which is

obtained by fusing the IMU preintegrated ego-motion and the ones predicted by

Mp under our camera-centric EKF framework. SSIM(·) denotes the structural

similarity index (Wang et al., 2004). We also adopt the per-pixel minimum trick

proposed in Godard et al. (2019).
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4.3.2.3 Cross-Sensor Photometric Consistency Loss

In addition to LIMU
photo, we further propose a cross-sensor photometric consistency

loss Lcons
photo to align the ego-motions from IMU preintegration andMp. Instead

of directly comparing the ego-motions, we use the photometric error between

the backwarped images, which provides denser supervisory signals for bothMd

andMp:

Lcons
photo =

1

N

N∑
i=1

min
δ∈{−1,1}

L(Iδ(ψ(KR̃δK
−1yi+

Kp̃δ

z̃i
)), Iδ(ψ(KR̂δK

−1yi+
Kp̂δ

z̃i
))),

(4.8)

where {R̃δ, p̃δ} are the ego-motion predicted byMp.

Remark: Of note is that using Lcons
photo actually increases the tolerance for illu-

mination change and moving objects which violate the underlying assumption

of the photometric loss between consecutive frames. Since we are comparing

two backwarped views in Lcons
photo, the errors incurred by the corner cases will be

exhibited equally in both backwarped views. In this sense, Lcons
photo remains valid,

and minimizing Lcons
photo helps to align {R̃δ, p̃δ} and {R̂δ, p̂δ} under such cases.

4.3.2.4 The Camera-Centric EKF Fusion

To fully exploit the complementary IMU and camera sensors, we propose to

fuse ego-motions from both sensors under a camera-centric EKF framework.

Different from previous methods that integrate EKF into deep learning-based

frameworks to deal with IMU data (Liu et al., 2020b; Li and Waslander, 2020),

ours differs in that we do not require ground-truth ego-motion and velocities

to obtain the aligned velocities and gravities for each IMU frame, but propose

{Mv,Mg} to predict these quantities. In addition, instead of expressing the

error states in the IMU body frame, we derive the differentiable camera-centric

EKF propagation and update processes to facilitate the training process which

takes camera images as input.
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EKF Propagation: Let ck denote the camera frame at time tk, and {bt} de-

note the IMU frames between tk and time tk+1 when we receive the next visual

measurement. We then propagate the IMU information according to the state

transition model: xt = f(xt−1,ut) +wt, where ut is the IMU record at time t,

wt is the noise term, and xt = [ϕT
ckbt

,pT
ckbt

,vckT , gckT , bbtTw , bbtTa ]T is the state

vector expressed in the camera frame ck except for {bw, ba}. ϕckbt denotes the

so(3) Lie algebra of the rotation matrix Rckbt s.t. Rckbt = exp([ϕckbt ]
∧), where

[·]∧ denotes the operation from a so(3) vector to the corresponding skew sym-

metric matrix. To facilitate the derivation of the propagation process, we further

separate the state into the nominal states denoted by (̄·), and the error states

δxbt = [δϕT
ckbt

, δpT
ckbt

, δvckT , δgckT , δbbtTw , δbbtTa ]T , such that:

Rckbt = R̄ckbtexp([δϕckbt ]
∧), pckbt = p̄ckbt + δpckbt , (4.9)

vck = v̄ck + δvck , gck = ḡck + δgck , (4.10)

bbtw = b̄w
bt + δbbtw , bbta = b̄a

bt + δbbta . (4.11)

The nominal states can be computed using the preintegration terms, while the er-

ror states are used for propagating the covariances. It is noteworthy that the state

transition model of δxbt is non-linear, which prevents a naive use of the Kalman

filter. EKF addresses this problem and performs propagation by linearizing the

state transition model at each time step using the first-order Taylor approxi-

mation. Therefore, let ˙(·) denote the derivative w.r.t. time t, we derive the

continuous-time propagation model for the error states as: δẋbt = F δxbt+Gn.
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Detailed derivations are given in Chapter 4.5, and F and G read:

F =



−[w̄bt ]∧ 0 0 0 −I3 0

0 0 I3 0 0 0

−R̄ckbt [R̄
T
ckbt

ḡck + ābt ]∧ 0 0 −I3 0 −R̄ckbt

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (4.12)

G =



−I3 0 0 0

0 0 0 0

0 0 −R̄ckbt 0

0 0 0 0

0 I3 0 0

0 0 0 I3


, (4.13)

where w̄bt = wbt
m− b̄w

bt and ābt = abt
m− R̄T

ckbt
ḡck − b̄a

bt . Given the continuous

error propagation model and the initial condition Φtτ ,tτ = I18, the discrete state-

transition matrix Φ(tτ+1,tτ ) can be found by solving Φ̇(tτ+1,tτ ) = Ftτ+1Φ(tτ+1,tτ ):

Φtτ+1,tτ = exp(

∫ tτ+1

tτ

F (s)ds) ≈ I18+F δt+
1

2
F 2δt2, δt = tτ+1−tτ . (4.14)

Let P̌ and P̂ denote the prior and posterior covariance estimates during propa-

gation and after an update given new observations. Then we have

ˇPtτ+1 = Φtτ+1,tτ P̌tτΦ
T
tτ+1,tτ

+Qtτ , (4.15)

Qtτ =

∫ tτ+1

tτ

Φs,tτGQGTΦT
s,tτds ≈ Φtτ+1,tτGQGTΦT

tτ+1,tτ
δt, (4.16)

where Q = D([σ2
wI3, σ

2
bw
I3, σ

2
aI3, σ

2
ba
I3]). D is the diagonalization function.
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EKF Update: In general, given an observation measurement ξk+1 and its cor-

responding covariance Γk+1 from the camera sensor at time tk+1, we assume the

following observation model: ξk+1 = h(xk+1) + nr, nr ∼ N(0,Γk+1).

Let Hk+1 =
∂h(xk+1)

∂δxk+1
. Then the EKF update applies as following:

Kk+1 = P̌k+1H
T
k+1(Hk+1

ˇPk+1H
T
k+1 + Γk+1)

−1, (4.17)

P̂k+1 = (I18 −Kk+1Hk+1)P̌k+1, (4.18)

δx̂k+1 = Kk+1(ξk+1 − h(x̌k+1)). (4.19)

In DynaDepth, the observation measurement is defined as the ego-motion pre-

dicted byMp, i.e., ξk+1 = [ϕ̃T
ckck+1

, p̃T
ckck+1

]T . Of note is that the covariances

Γk+1 of {ϕ̃T
ckck+1

, p̃T
ckck+1

} are also predicted by the ego-motion network Mp.

To finish the camera-centric EKF update step, we derive h(x̌k+1) and Hk+1 as:

h(x̌k+1) =

 ϕ̄ckck+1

R̄ckbk+1
pbc + p̄ckbk+1

 , (4.20)

Hk+1 =

Jl(−ϕ̄ckck+1
)−1Rcb 0 0 0 0 0

−R̄ckbk+1
[pbc]

∧ I3 0 0 0 0

 . (4.21)

After obtaining the updated error states δx̂k+1, we add δx̂k+1 back to the ac-

cumulated nominal states to get the corrected ego-motion. In detail, δx̂k+1 is

obtained by inserting Equation 4.20-4.21 into Equation 4.101-4.103. Then the

updated {ϕ̂ckbk+1
, p̂ckbk+1

} can be computed using Equation 4.42. Then by pro-

jecting {ϕ̂ckbk+1
, p̂ckbk+1

} to {ϕ̂ckck+1
, p̂ckck+1

} using the camera intrinsics, we

obtain the corrected ego-motion {ϕ̂ckck+1
, p̂ckck+1

} that fuses IMU and camera

information based on their covariances as confidence indicators, which are used

to compute LIMU
photo and Lcons

photo.
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Finally, in addition to {LIMU
photo, L

cons
photo}, the total training lossLtotal in DynaDepth

also includes the vision-based photometric loss Lvis
photo and the disparity smooth-

ness loss Ls as proposed in monodepth2 Godard et al. (2019) to leverage the

visual clues. We also consider the weak L2-norm loss Lvg for the velocity and

gravity predictions fromMv andMg. In summary, Ltotal reads:

Ltotal = Lvis
photo + λ1Ls + λ2L

IMU
photo + λ3L

cons
photo + λ4Lvg, (4.22)

where {λ1, λ2, λ3, λ4} are the empirically determined loss weights.

Remark: Although we have witnessed a paradigm shift from EKF to opti-

mization in classical visual-inertial SLAM systems in recent years (Mourikis

and Roumeliotis, 2007; Leutenegger et al., 2015; Qin et al., 2018), we argue

that in the setting of unsupervised depth estimation, EKF provides a better

choice than optimization. The major problem of EKF is its limited ability

to handle long-term data because of the Markov assumption between updates,

the first-order approximation for the non-linear state-transition and observation

models, and the memory consumption for storing the covariances. However,

in our setting, short-term image clips are usually used as the basic training

unit, which indicates that the Markov property and the linearization in EKF

will approximately hold within the short time intervals. In addition, only the

ego-motions predicted by Mp are used as the visual measurements, which is

memory-efficient.

On the other hand, by using EKF, we are able to correct the IMU preintegrated

ego-motions and update {LIMU
photo, L

cons
photo} accordingly when observing new vi-

sual measurements. Compared with formulating the commonly-used optimiza-

tion objective, i.e., the residues of the IMU preintegration terms, as the training

losses, our proposed LIMU
photo and Lcons

photo provide denser supervision for bothMd

andMp. From another perspective, EKF essentially can be regarded as weight-

ing the ego-motions from IMU and vision based on their covariances, and thus
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naturally provides a framework for estimating the uncertainty of the ego-motion

predicted byMp, which is non-trivial for the unsupervised learning frameworks.

4.4 Experiment

We evaluate the effectiveness of DynaDepth on KITTI (Geiger et al., 2013) and

test the generalization ability on Make3D (Saxena et al., 2008). In addition, we

perform extensive ablation studies on our proposed IMU losses, the EKF frame-

work, the learnt ego-motion uncertainty, and the robustness against illumination

change and moving objects.

4.4.1 Implementation

DynaDepth is implemented in PyTorch (Steiner et al., 2019). We adopt the

monodepth2 (Godard et al., 2019) network structures for {Md,Mp}, except

that we increase the output dimension of Mp from 6 to 12 to include the un-

certainty predictions. {Mg,Mv} share the same network structure asMp ex-

cept that the output dimensions are both set to 3. {λ1, λ2, λ3, λ4} are set to

{0.001, 0.5, 0.01, 0.001}. We train all networks for 30 epochs using an initial

learning rate 1e-4, which is reduced to 1e-5 after the first 15 epochs. The train-

ing process takes 1 ∼ 2 days on a single NVIDIA V100 GPU. The source codes

and the trained models will be released.

4.4.2 Scale-Aware Depth Estimation on KITTI

We use the Eigen split (Eigen and Fergus, 2015) for depth evaluation. In addi-

tion to the removal of static frames as proposed in Zhou et al. (2017), we discard

images without the corresponding IMU records, leading to 38,102 image-and-

IMU triplets for training and 4,238 for validation. WLOG, we use the image
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Table 4.1. Per-image rescaled depth evaluation on KITTI using the Eigen split. The
best and the second best results are shown in bold and underline. † denotes our re-
produced results. Results are rescaled using the median ground-truth from Lidar. The
means and standard errors of the scaling ratios are reported in Scale.

Methods Scale Error↓ Accuracy↑
AbsRel SqRel RMSE RMSElog σ < 1.25 σ < 1.252 σ < 1.253

Monodepth2 R18 (Godard et al., 2019) NA 0.112 0.851 4.754 0.190 0.881 0.960 0.981
Monodepth2 R50† (Godard et al., 2019) 29.128±0.084 0.111 0.806 4.642 0.189 0.882 0.962 0.982

PackNet-SfM (Guizilini et al., 2020) NA 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Johnston R18 (Johnston and Carneiro, 2020) NA 0.111 0.941 4.817 0.189 0.885 0.961 0.981

R-MSFM6 (Zhou et al., 2021) NA 0.112 0.806 4.704 0.191 0.878 0.960 0.981
G2S R50 (Chawla et al., 2021) 1.031±0.073 0.112 0.894 4.852 0.192 0.877 0.958 0.981

ScaleInvariant R18 (Wang et al., 2021) NA 0.109 0.779 4.641 0.186 0.883 0.962 0.982

DynaDepth R18 1.021±0.069 0.111 0.806 4.777 0.190 0.878 0.960 0.982
DynaDepth R50 1.013±0.071 0.108 0.761 4.608 0.187 0.883 0.962 0.982

Table 4.2. Unscaled depth evaluation on KITTI using the Eigen split. † denotes our
reproduced results. The best results are shown in bold.

Methods Error↓ Accuracy↑
AbsRel SqRel RMSE RMSElog σ < 1.25 σ < 1.252 σ < 1.253

Monodepth2 R50† (Godard et al., 2019) 0.966 15.039 19.145 3.404 0.000 0.000 0.000
PackNet-SfM (Guizilini et al., 2020) 0.111 0.829 4.788 0.199 0.864 0.954 0.980

G2S R50 (Chawla et al., 2021) 0.109 0.860 4.855 0.198 0.865 0.954 0.980

DynaDepth R50 0.109 0.787 4.705 0.195 0.869 0.958 0.981

resolution 640x192 and cap the depth predictions at 80m, following the com-

mon practice in Godard et al. (2019); Johnston and Carneiro (2020); Guizilini

et al. (2020); Chawla et al. (2021); Wang et al. (2021).

We compare DynaDepth with state-of-the-art monocular depth estimation meth-

ods in Table 4.1, which rescale the results using the ratio of the median depth

between the ground-truth and the prediction. For a fair comparison, we only

present results achieved with image resolution 640x192 and an encoder with

moderate size, i.e., ResNet18 (R18) or ResNet50 (R50). In addition to standard

depth evaluation metrics (Eigen et al., 2014), we report the means and stan-

dard errors of the rescaling factors to demonstrate the scale-awareness ability.

DynaDepth achieves the best up-to-scale performance w.r.t. four metrics and

achieves the second best for the other three metrics. Of note is that DynaDepth

also achieves a nearly perfect absolute scale. In terms of scale-awareness, even



4.4 EXPERIMENT 95

Table 4.3. Generalization results on Make3D. ∗ denotes unscaled results while the oth-
ers present per-image rescaled results. The best results are shown in bold. M, S, GPS,
and IMU in Type denote whether monocular, stereo, GPS and IMU information are
used for training the model on KITTI. - means item not available.

Methods Lvg EKF Type Scale Error↓ Accuracy↑
Absrel Sqrel RMSE RMSElog σ < 1.25 σ < 1.252 σ < 1.253

Zhou (Zhou et al., 2017) - - M - 0.383 5.321 10.470 0.478 - - -
Monodepth2 (Godard et al., 2019) - - M - 0.322 3.589 7.417 0.163 - - -

G2S (Chawla et al., 2021) - - M+GPS 2.81±0.85 - - - - - - -
DynaDepth M+IMU 1.37±0.27 0.316 3.006 7.218 0.164 0.522 0.797 0.914
DynaDepth ✓ M+IMU 1.26±0.27 0.313 2.878 7.133 0.162 0.527 0.800 0.916

DynaDepth (full) ✓ ✓ M+IMU 1.45±0.26 0.334 3.311 7.463 0.169 0.497 0.779 0.908

Monodepth2∗ (Godard et al., 2019) - - M+S - 0.374 3.792 8.238 0.201 - - -
DynaDepth∗ M+IMU - 0.360 3.461 8.833 0.226 0.295 0.594 0.794
DynaDepth∗ ✓ M+IMU - 0.337 3.135 8.217 0.201 0.384 0.671 0.845

DynaDepth∗ (full) ✓ ✓ M+IMU - 0.378 3.655 9.034 0.240 0.261 0.550 0.758

our R18 version outperforms G2S R50 (Chawla et al., 2021), which uses a heav-

ier encoder. For better illustration, we also show the scaling ratio histograms

with and without IMU in Fig. 4.1(b).

We then report the unscaled results in Table 4.2, and compare with PackNet-

SfM (Guizilini et al., 2020) and G2S (Chawla et al., 2021), which use the

GPS information to construct velocity constraints. Without rescaling, Mon-

odepth2 (Godard et al., 2019) fails completely as expected. In this case, Dy-

naDepth achieves the best performance w.r.t. all metrics, setting a new bench-

mark of unscaled depth evaluation for monocular methods.

4.4.3 Generalizability on Make3D

We further test the generalizability of DynaDepth on Make3D (Saxena et al.,

2008) using models trained on KITTI (Geiger et al., 2013). The test images are

centre-cropped to a 2x1 ratio for a fair comparison with previous methods (Go-

dard et al., 2019). A qualitative example is given in Fig. 4.1(c), where the model

without IMU fails in the glass and shadow areas, while our model achieves a

distinguishable prediction.

Quantitative results. We report the results in Table 4.3. A reasonably good

scaling ratio has been achieved for DynaDepth, indicating that the scale-awareness
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w.o/ IMU w/ IMUInput Image

Figure 4.2. Qualitative results on Make3D using models trained on KITTI with (w/)
and without (w.o/) IMU.

learnt by DynaDepth can be well generalized to unseen datasets. Surprisingly,

we found that DynaDepth that only uses the gyroscope and accelerator IMU

information (w.o/ Lvg) achieves the best generalization results. The reason can

be two-fold. First, our full model may overfit to the KITTI dataset due to the

increased modeling capacity. Second, the performance degradation can be due

to the domain gap of the visual data, since both Mv and Mg take images as

input. This also explains the scale loss of G2S in this case.

We further show that DynaDepth w.o/ Lvg significantly outperforms the stereo

version of Monodepth2, which can also be explained by the visual domain gap,

especially the different camera intrinsics used in their left-right consistency loss.

Our generalizability experiment justifies the advantages of using IMU to provide

scale information, which will not be affected by the visual domain gap and

varied camera parameters, leading to improved generalization performance. In

addition, it is also shown that the use of EKF in training significantly improves

the generalization ability, possibly thanks to the EKF fusion framework that
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w.o/ IMU w/ IMUInput Image

Figure 4.3. Qualitative results on Make3D using models trained on KITTI with (w/)
and without (w.o/) IMU.

takes the uncertainty into account and integrates the generalizable IMU motion

dynamics and the domain-specific vision information in a more reasonable way.

Qualitative results. We present qualitative results for better illustration in

Fig. 4.3-4.5. By using IMU, it can be seen that the model generalizes better

in unseen datasets, especially in the glass and shadow areas, where the under-

lying assumption of visual photometric consistency can be easily violated. In

addition, the model using IMU recovers more delicate texture details, which fur-

ther justifies the benefit of using the IMU motion dynamics that is independent

with the visual information during training.

4.4.4 Ablation Studies

We conduct ablation studies on KITTI to investigate the effects of the proposed

IMU-related losses, the EKF fusion framework, and the learnt ego-motion un-

certainty. In addition, we design simulatations to demonstrate the robustness of
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w.o/ IMU w/ IMUInput Image

Figure 4.4. Qualitative results on Make3D using models trained on KITTI with (w/)
and without (w.o/) IMU.

w.o/ IMU w/ IMUInput Image

Figure 4.5. Qualitative results on Make3D using models trained on KITTI with (w/)
and without (w.o/) IMU.
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Table 4.4. Ablation results of the IMU-related losses and the EKF fusion framework
on KITTI. The best results are shown in bold.

EKF LIMU
photo Lcons

photo Lvg Scale Error↓ Accuracy↑
AbsRel SqRel RMSE RMSElog σ < 1.25 σ < 1.252 σ < 1.253

✓ ✓ 1.130±0.099 0.115 0.804 4.806 0.193 0.871 0.959 0.982
✓ ✓ 4.271±0.089 0.114 0.832 4.780 0.192 0.876 0.959 0.981
✓ ✓ ✓ 1.076±0.095 0.113 0.794 4.760 0.191 0.874 0.960 0.982
✓ ✓ ✓ ✓ 1.021±0.069 0.111 0.806 4.777 0.190 0.878 0.960 0.982

✓ ✓ 0.968±0.098 0.115 0.839 4.898 0.194 0.869 0.958 0.981
✓ ✓ ✓ 1.076±0.095 0.113 0.794 4.760 0.191 0.874 0.960 0.982

✓ ✓ ✓ 1.013±0.069 0.112 0.808 4.751 0.191 0.877 0.960 0.982
✓ ✓ ✓ ✓ 1.021±0.069 0.111 0.806 4.777 0.190 0.878 0.960 0.982

DynaDepth against vision degradation such as illumination change and moving

objects. WLOG, we use ResNet18 as the encoder for all ablation studies.

4.4.4.1 The effects of the IMU-related losses and the EKF Fusion

Framework

We report the ablation results of the IMU-related losses and the EKF fusion

framework in Table 4.4. First, LIMU
photo presents the main contributor to learning

the scale. However, only a rough scale is learnt using LIMU
photo only. And the up-to-

scale accuracy is also not as good as the other models. Lcons
photo provides better up-

to-scale accuracy, but using Lcons
photo alone is not enough to learn the absolute scale

due to the relatively weak supervision. Instead, combining LIMU
photo and Lcons

photo

together boosts the performance of both the scale-awareness and the accuracy.

The use of Lvg further enhances the evaluation results. Nevertheless, as shown

in Chapter 4.4.3, Lvg may lead to overfitting to current dataset and harm the

generalizability, due to its dependence on visual data that suffers from the visual

domain gap between different datasets. On the other hand, EKF improves the

up-to-scale accuracy w.r.t. almost all metrics, while decreasing the learnt scale

information a little bit. Since the scale information comes from IMU, and the

visual data contributes most to the up-to-scale accuracy, EKF achieves a good

balance between the two sensors. Moreover, as shown in Table 4.3, the use of

EKF leads to the best generalization results w.r.t. both scale and accuracy.
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Table 4.5. Ablation results of the robustness against vision degradation on the simu-
lated data from KITTI. The best results are shown in bold. IC and MO denote the two
investigated vision degradation types, i.e., illumination change and moving objects. -
means item not available. † denotes our reproduced results.

Methods EKF Lvg Type Scale Error↓ Accuracy↑
AbsRel SqRel RMSE RMSElog σ < 1.25 σ < 1.252 σ < 1.253

Monodepth2† (Godard et al., 2019) - - IC 27.701±0.096 0.127 0.976 5.019 0.220 0.855 0.946 0.972
DynaDepth IC 1.036±0.099 0.124 0.858 4.915 0.226 0.852 0.950 0.977
DynaDepth ✓ IC 0.946±0.089 0.123 0.925 4.866 0.196 0.863 0.957 0.981
DynaDepth ✓ ✓ IC 1.019±0.074 0.121 0.906 4.950 0.217 0.859 0.954 0.978

Monodepth2† (Godard et al., 2019) - - MO 0.291±0.176 0.257 2.493 8.670 0.398 0.584 0.801 0.897
DynaDepth MO 0.083±0.225 0.169 1.290 6.030 0.278 0.763 0.915 0.960
DynaDepth ✓ MO 0.087±0.119 0.126 0.861 5.312 0.210 0.840 0.948 0.979
DynaDepth ✓ ✓ MO 0.956±0.084 0.125 0.926 4.954 0.214 0.852 0.949 0.976

4.4.4.2 The robustness against vision degradation

We then examine the robustness of DynaDepth against illumination change and

moving objects, two major cases that violate the underlying assumption of the

photometric loss. We simulate the illumination change by randomly alternating

image contrast within a range 0.5. The moving objects are simulated by ran-

domly inserting three 150x150 black squares. In contrast to data augmentation,

we perform the perturbation for each image independently, rather than applying

the same perturbation to all images in a triplet. Results are given in Table 4.5.

Under illumination change, the accuracy of Monodepth2 degrades as expected,

while DynaDepth rescues the accuracy to a certain degree and maintains the

correct absolute scales. EKF improves almost all metrics in this case, and us-

ing both EKF and Lvg achieves the best scale and AbsRel. However, the model

without Lvg obtains the best performance on most metrics. The reason may

be the dependence of Lvg on the visual data, which is more sensitive to image

qualities. When there exist moving objects, Monodepth2 fails completely. Us-

ing DynaDepth without EKF and Lvg improves the up-to-scale accuracy a little

bit, but the results are still far from expected. Using EKF significantly improves

the up-to-scale results, while it is still hard to learn the scale given the difficulty

of the task. In this case, using Lvg is shown to provide strong scale supervision

and achieve a good scale result.
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Figure 4.6. The training processes w.r.t. the AbsRel evaluation metric (left) and the
averaged ego-motion covariance (right).

Table 4.6. The averaged magnitude |t̄| and the variance σ̄2t of the translation predictions
along axis-x, axis-y, and axis-z, respectively.

axis-x axis-y axis-z

|t̄| 0.017 0.018 0.811
σ̄2
t 7.559 5.222 0.105

4.4.4.3 The learnt ego-motion uncertainty

We illustrate the training progress of the ego-motion uncertainty in Fig. 4.6. We

report the averaged covariance as the uncertainty measure. The learnt uncer-

tainty exhibits a similar pattern as the depth error (AbsRel), meaning that the

model becomes more certain about its predictions as the training continues. Of

note is that only indirect supervision is provided, which justifies the effective-

ness of our fusion framework. In addition, DynaDepth R50 achieves a lower

uncertainty than R18, indicating that a larger model capacity also contributes

to the prediction confidence, yet such difference can hardly be seen w.r.t. Ab-

sRel. Table 4.6 presents another interesting observation. In KITTI, the axis-z

denotes the forward direction. Since most test images correspond to driving

forward, the magnitude of tz is significantly larger than {tx, ty}. Accordingly,

DynaDepth shows a high confidence on tz, while large variances are observed
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for {tx, ty}, potentially due to the difficulty to distinguish the noises from the

small amount of translations along axis-x and axis-y.

4.5 Derivations

Here we provide the derivations of the camera-centric IMU preintegration, the

EKF propagation, and the EKF update processes.

4.5.1 Derivation of Camera-Centric IMU Preintegration

Let {pwbt , qwbt} and vw
t denote the translation and rotation from the body frame

to the world frame, and the velocity expressed in the world frame at time t,

where qwbt is the corresponding quaternion of Rwbt . The first-order derivatives

of {p,v, q} read: ˙pwbt = vw
t , v̇w

t = aw
t , and ˙qwbt = qwbt⊗ [0, 1

2
wbt ]T . Then the

continuous IMU motion dynamics from time i to j is given by:

pwbj = pwbi + vw
i ∆t+

∫ ∫
t∈[i,j]

(Rwbta
bt − gw)dt2, (4.23)

vw
j = vw

i +

∫
t∈[i,j]

(Rwbta
bt − gw)dt, (4.24)

qwbj =

∫
t∈[i,j]

qwbt ⊗ [0,
1

2
wbt ]Tdt, (4.25)

where ∆t is the time gap between i and j, and ⊗ denotes quaternion multi-

plication. By leveraging the multiplicative property of rotation, i.e., qwbt =

qwbi ⊗ qbibt , we have:

pwbj = pwbi + vw
i ∆t−

1

2
gw∆t2 +Rwbiαbibj , (4.26)

vw
j = vw

i − gw∆t+Rwbiβbibj , (4.27)

qwbj = qwbi ⊗ qbibj , (4.28)
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where the three integration terms that can be pre-computed read:

αbibj =

∫ ∫
t∈[i,j]

(Rbibta
bt)dt2, (4.29)

βbibj =

∫
t∈[i,j]

(Rbibta
bt)dt, (4.30)

qbibj =

∫
t∈[i,j]

qbibt ⊗ [0,
1

2
wbt ]Tdt, (4.31)

Given the extrinsics {Rcb,pcb} and {Rbc,pbc} between the IMU and the camera

frames, based on Equation 4.31, we can first derive the camera-centric IMU

preintegrated rotation Řckck+1
as:

ˇRckck+1
= RcbF−1(qbkbk+1

)Rbc, (4.32)

where F denotes the transformation from rotation matrix to quaternion. Then

by rearranging Equation 4.26, we have:

αbkbk+1
= Rbkw(pwbk+1

− pwbk)−Rbkwv
w
i ∆t+

1

2
Rbkwg

w∆t2 (4.33)

= pbkbk+1
− vbk

i ∆t+
1

2
gbk∆t2 (4.34)

= Rbkck(pckbk+1
− pckbk)− vbk

i ∆t+
1

2
gbk∆t2. (4.35)

By left-multiplying Rcb to both sides of Equation 4.35, we have:

Rcbαbkbk+1
= pckbk+1

− pcb − vck
i ∆t+

1

2
gck∆t2. (4.36)

Then we consider the following two equations w.r.t. translation:

pcb = −Rcbpbc, (4.37)

pckbk+1
= pckck+1

−Rckbk+1
pbk+1ck+1

(4.38)

= pckck+1
−Rckck+1

Rck+1bk+1
pbk+1ck+1

(4.39)

= pckck+1
−Rckck+1

Rcbpbc. (4.40)
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By inserting Equation 4.37-4.40 into Equation 4.36 and rearranging the resulting

formula, we obtain the camera-centric IMU preintegrated translation:

ˇpckck+1
= Rcbαbkbk+1

+Rckck+1
Rcbpbc −Rcbpbc + vck∆t− 1

2
gck∆t2. (4.41)

4.5.2 Derivation of Camera-Centric EKF Propagation

Let ck denote the camera frame at time tk, and {bt} denote the IMU frames

between tk and time tk+1 when we receive the next visual measurement. We

then propagate the IMU information according to the state transition model:

xt = f(xt−1,ut) + wt, where ut is the IMU record at time t, wt is the

noise term, and xt = [ϕT
ckbt

,pckbtT ,v
ckT , gckT , bbtTw , bbtTa ]T is the state vector

expressed in the camera frame ck except for {bw, ba}. ϕckbt denotes the so(3)

Lie algebra of the rotation matrix Rckbt s.t. Rckbt = exp([ϕckbt ]
∧), where [·]∧

denotes the operation from a so(3) vector to the corresponding skew symmet-

ric matrix. To facilitate the derivation of the propagation process, we further

separate the state into the nominal states denoted by (̄·), and the error states

δxbt = [δϕT
ckbt

, δpT
ckbt

, δvckT , δgckT , δbbtTw , δbbtTa ]T , such that:

Rckbt = R̄ckbtexp([δϕckbt ]
∧), pckbt = p̄ckbt + δpckbt , (4.42)

vck = v̄ck + δvck , gck = ḡck + δgck , (4.43)

bbtw = b̄w
bt + δbbtw , bbta = b̄a

bt + δbbta . (4.44)

The nominal states can be computed using the preintegration terms, while the

error states are used for propagating the covariances. It is noteworthy that the

state transition model of δxbt is non-linear, which prevents a naive use of the

Kalman filter. EKF addresses this problem and performs propagation by lin-

earizing the state transition model at each time step using the first-order Taylor

approximation. Therefore, let ˙(·) denote the derivative w.r.t. time t, we derive
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the continuous-time propagation model for the error states as:

δẋbt = F δxbt +Gn, (4.45)

where n = {nT
w,n

T
bw,n

T
a ,n

T
ba}. nw and na denote the white Gaussian noise

in the commonly-used IMU noise model, and nbw and nba denote the Gauss-

ian steps for the white Gaussian random walks bbtw and bbta , respectively. The

derivations of F and G are given as following.

We first consider ˙δgck . Since δgck is a constant w.r.t. time t, we have:

˙δgck = 0. (4.46)

And by the definition of the Gaussian random walks {bbtw , bbtw}, we have:

˙δbbtw = nbw, (4.47)

˙δbbta = nba, (4.48)

We then come to δ ˙ϕckbt . Since δϕckbt presents a small amount increment, by

using Equation 4.42 and first-order Taylor expansion, we have:

Rckbt = R̄ckbtexp([δϕckbt ]
∧) (4.49)

≈ R̄ckbt(I + [δϕckbt ]
∧). (4.50)

Then by using the derivative of Rckbt w.r.t. time t, i.e., ˙Rckbt = Rckbt [w
bt ]∧, we

can take the derivative of both sides of Equation 4.50, leading to:

Rckbt [w
bt ]∧ ≈ R̄ckbt [w̄

bt ]∧(I + [δϕckbt ]
∧) + R̄ckbt

˙δϕckbt , (4.51)

where w̄bt denotes the nominal angular velocity expressed in the IMU body

frame at time t. By inserting Equation 4.50 into Equation 4.51, we have:

R̄ckbt(I + [δϕckbt ]
∧)[wbt ]∧ ≈ R̄ckbt [w̄

bt ]∧(I + [δϕckbt ]
∧) + R̄ckbt

˙[δϕckbt ]
∧.

(4.52)
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By cancelling R̄ckbt in Equation 4.52 and rearranging the formula, we have:

˙[δϕckbt ]
∧ ≈ (I + [δϕckbt ]

∧)[wbt ]∧ − [w̄bt ]∧(I + [δϕckbt ]
∧) (4.53)

= (I + [δϕckbt ]
∧)[w̄bt + δwbt ]∧ − [w̄bt ]∧(I + [δϕckbt ]

∧) (4.54)

= (I + [δϕckbt ]
∧)([w̄bt ]∧ + [δwbt ]∧)− [w̄bt ]∧(I + [δϕckbt ]

∧).

(4.55)

By rearranging Equation 4.55 and using the equation [u∧v]∧ = u∧v∧ − v∧u∧:

˙[δϕckbt ]
∧ ≈ [δwbt ]∧ + [δϕckbt ]

∧[δwbt ]∧ + [δϕckbt ]
∧[w̄bt ]∧ − [w̄bt ]∧[δϕckbt ]

∧

(4.56)

≈ [δwbt ]∧ + [δϕckbt ]
∧[δwbt ]∧ + [[δϕckbt ]

∧w̄bt ]∧. (4.57)

By neglecting the high-order small term [δϕckbt ]
∧[δwbt ]∧, and using the equa-

tion u∧v = −v∧u, we have:

˙[δϕckbt ]
∧ ≈ [δwbt ]∧ + [[δϕckbt ]

∧w̄bt ]∧ (4.58)

= [δwbt + [δϕckbt ]
∧w̄bt ]∧. (4.59)

˙δϕckbt ≈ δϕckbt ]
∧w̄bt (4.60)

= −[w̄bt ]∧δϕckbt + δwbt (4.61)

We then derive w̄bt and δwbt to complete Equation 4.61 for ˙δϕckbt . Recall that

we have the following noise model for the gyroscope measurement:

wbt
m = wbt + bbtw + nw, nw ∼ N(0, σ2

wI). (4.62)

By inserting Equation 4.44 in to Equation 4.62 and rearranging the formula:

wbt = wbt
m − b̄btw − δbbtw − nw. (4.63)
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By separating the nominal and stochastic terms in Equation 4.63, we have:

w̄bt = wbt
m − b̄btw , (4.64)

δwbt = −δbbtw − nw., (4.65)

which complete the derivation of ˙δϕckbt in Equation 4.61 w.r.t. δxbt and n.

We next derive ˙δpckbt . Taking the derivative w.r.t. both sides of Equation 4.42,

i.e., pckbt = p̄ckbt + δpckbt , and rearranging the resulting equation leads to:

˙δpckbt = ˙pckbt − ˙̄pckbt (4.66)

= vck
t − v̄ck

t . (4.67)

By approximating vck
t and v̄ck

t by vck and v̄ck , and inserting Equation 4.43 into

the approximated Equation 4.67, we have:

˙δpckbt ≈ v̄ck
t + δvck − v̄ck

t (4.68)

= δvck . (4.69)

Finally, we give the derivation of ˙δvck as following. We first take the derivative

to both sides of Equation 4.43 and rearrange the formula, leading to:

˙δvck = ˙vck − ˙̄vck (4.70)

= ack − āck . (4.71)

ack and āck can be derived as:

ack = Rckbta
bt (4.72)

= R̄ckbtexp([δϕckbt ]
∧)(ābt + δabt) (4.73)

≈ R̄ckbt(I + [δϕckbt ]
∧)(ābt + δabt), (4.74)

āck = R̄ckbtā
bt . (4.75)
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By inserting Equation 4.74-4.75 to Equation 4.71, we have:

˙δvck ≈ R̄ckbtā
bt + R̄ckbtδa

bt + R̄ckbt [δϕckbt ]
∧ābt

+ R̄ckbt [δϕckbt ]
∧δabt − R̄ckbtā

bt (4.76)

= R̄ckbtδa
bt + R̄ckbt [δϕckbt ]

∧ābt + R̄ckbt [δϕckbt ]
∧δabt . (4.77)

By neglecting the high-order small term R̄ckbt [δϕckbt ]
∧δabt in Equation 4.77

and using the equation u∧v = −v∧u, we have:

˙δvck ≈ R̄ckbtδa
bt − R̄ckbt [ā

bt ]∧δϕckbt . (4.78)

We then derive ābt and δabt to complete Equation 4.78. Recall that we have the

following noise model for the accelerometer measurement:

abt
m = abt +Rbtckg

ck + bbta + na, na ∼ N(0, σ2
wI). (4.79)

By inserting Equation 4.42-4.44 to Equation 4.79 and using RT = R−1:

abt
m = abt + [R̄ckbtexp([δϕckbt ]

∧)]T (ḡck + δgck)

+ b̄bta + δbbta + na. (4.80)

We rearrange the second term in Equation 4.80 as below:

[R̄ckbtexp([δϕckbt ]
∧)]T (ḡck + δgck) (4.81)

≈[R̄ckbt(I + [δϕckbt ]
∧)]T (ḡck + δgck) (4.82)

=[R̄ckbt + R̄ckbt [δϕckbt ]
∧]T (ḡck + δgck) (4.83)

=(R̄T
ckbt

+ [[δϕckbt ]
∧]T R̄T

ckbt
)(ḡck + δgck). (4.84)

Since [δϕckbt ]
∧ is a skew symmetric matrix, Equation 4.84 can be rewritten as:

[R̄ckbtexp([δϕckbt ]
∧)]T (ḡck + δgck) (4.85)

≈(R̄T
ckbt

+ [[δϕckbt ]
∧]T R̄T

ckbt
)(ḡck + δgck) (4.86)

=(R̄T
ckbt
− [δϕckbt ]

∧R̄T
ckbt

)(ḡck + δgck). (4.87)
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By inserting Equation 4.87 into Equation 4.80 and rearranging the resulting for-

mula:

abt = abt
m − b̄bta − δbbta − na − R̄T

ckbt
ḡck − R̄T

ckbt
δgck

+ [δϕckbt ]
∧R̄T

ckbt
ḡck + [δϕckbt ]

∧R̄T
ckbt

δgck . (4.88)

By separating the nominal and stochastic terms in Equation 4.88, we have:

ābt = abt
m − R̄T

ckbt
ḡck − b̄bta , (4.89)

δabt = − δbbta − na − R̄T
ckbt

δgck

+ [δϕckbt ]
∧R̄T

ckbt
ḡck + [δϕckbt ]

∧R̄T
ckbt

δgck (4.90)

≈ − δbbta − na − R̄T
ckbt

δgck + [δϕckbt ]
∧R̄T

ckbt
ḡck , (4.91)

where the high-order small term [δϕckbt ]
∧R̄T

ckbt
δgck in Equation 4.90 is ne-

glected. By inserting Equation 4.91 into Equation 4.78, we have:

˙δvck ≈ − R̄ckbtδb
bt
a − R̄ckbtna − R̄ckbtR̄

T
ckbt

δgck

+ R̄ckbt [δϕckbt ]
∧R̄T

ckbt
ḡck − R̄ckbt [ā

bt ]∧δϕckbt (4.92)

= − R̄ckbtδb
bt
a − R̄ckbtna − δgck

− R̄ckbt [R̄
T
ckbt

ḡck ]∧δϕckbt − R̄ckbt [ā
bt ]∧δϕckbt (4.93)

= − R̄ckbtδb
bt
a − R̄ckbtna − δgck

− R̄ckbt([R̄
T
ckbt

ḡck ]∧ + [ābt ]∧)δϕckbt (4.94)

= − R̄ckbtδb
bt
a − R̄ckbtna − δgck

− R̄ckbt [R̄
T
ckbt

ḡck + ābt ]∧δϕckbt . (4.95)
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Based on Equation 4.46-4.48,4.61,4.69,4.95 and the continuous-time error prop-

agation model Equation 4.45, F and G can be written as:

F =



−[w̄bt ]∧ 0 0 0 −I3 0

0 0 I3 0 0 0

−R̄ckbt [R̄
T
ckbt

ḡck + ābt ]∧ 0 0 −I3 0 −R̄ckbt

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (4.96)

G =



−I3 0 0 0

0 0 0 0

0 0 −R̄ckbt 0

0 0 0 0

0 I3 0 0

0 0 0 I3


. (4.97)

w̄bt and ābt are given in Equation 4.64 and Equation 4.89, respectively.

Given the continuous error propagation model and the initial condition Φtτ ,tτ =

I18, the discrete state-transition matrix Φ(tτ+1,tτ ) can be found by solving Φ̇(tτ+1,tτ ) =

Ftτ+1Φ(tτ+1,tτ ) Huang (2019):

Φtτ+1,tτ = exp(

∫ tτ+1

tτ

F (s)ds) ≈ I18+F δt+
1

2
F 2δt2, δt = tτ+1−tτ . (4.98)

Let P̌ and P̂ denote the prior and posterior covariance estimates during prop-

agation and after an update given new observations. Then we have (Barfoot,

2017; Huang, 2019):

ˇPtτ+1 = Φtτ+1,tτ P̌tτΦ
T
tτ+1,tτ

+Qtτ , (4.99)

Qtτ =

∫ tτ+1

tτ

Φs,tτGQGTΦT
s,tτds ≈ Φtτ+1,tτGQGTΦT

tτ+1,tτ
δt, (4.100)
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where Q = D([σ2
wI3, σ

2
bw
I3, σ

2
aI3, σ

2
ba
I3]). D is the diagonalization function.

4.5.3 Derivation of Camera-Centric EKF Update

In general, given an observation measurement ξk+1 and its corresponding co-

variance Γk+1 from the camera sensor at time tk+1, we assume the following

observation model: ξk+1 = h(xk+1) + nr, nr ∼ N(0,Γk+1).

Let Hk+1 =
∂h(xk+1)

∂δxk+1
. Then the EKF update applies as following:

Kk+1 = P̌k+1H
T
k+1(Hk+1

ˇPk+1H
T
k+1 + Γk+1)

−1, (4.101)

P̂k+1 = (I18 −Kk+1Hk+1)P̌k+1, (4.102)

δx̂k+1 = Kk+1(ξk+1 − h(x̌k+1)). (4.103)

In DynaDepth, the observation measurement is defined as the ego-motion pre-

dicted byMp, i.e., ξk+1 = [ϕ̃T
ckck+1

, p̃T
ckck+1

]T . Accordingly, we define h(xk+1)

as h(xk+1) = [hTϕ(xk+1), h
T
p (xk+1)]

T . We first consider the observation model

hϕ(xk+1) for rotation. Assuming [·]∨ as the inverse function of [·]∧, then:

hϕ(xk+1) = ϕckck+1
= ln([Rckbk+1

Rbc]
∨). (4.104)

{Rbc,pbc} and {Rcb,pcb} denote the extrinsics between camera and IMU. By

inserting Equation 4.42 into Equation 4.104, we have:

hϕ(xk+1) = ln([Rckbk+1
Rbc]

∨) (4.105)

= ln([R̄ckbk+1
exp([δϕckbk+1

]∧)Rbc]
∨) (4.106)

= ln([R̄ckbk+1
RbcRcbexp([δϕckbk+1

]∧)Rbc]
∨). (4.107)
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We separate the expression in [·]∨ in Equation 4.107 into the following two parts:

R̄ckbk+1
Rbc = R̄ckck+1

= exp([ϕ̄ckck+1
]∧), (4.108)

Rcbexp([δϕckbk+1
]∧)Rbc ≈ Rcb(I + [δϕckbk+1

]∧)Rbc (4.109)

= I +Rcb[δϕckbk+1
]∧Rbc. (4.110)

By using the equation [Rδϕ]∧ = R[δϕ]∧RT , Equation 4.110 is rewritten as:

Rcbexp([δϕckbk+1
]∧)Rbc ≈ I + [Rcbδϕckbk+1

]∧ (4.111)

≈ exp([Rcbδϕckbk+1
]∧). (4.112)

By inserting Equation 4.108 and Equation 4.112 into Equation 4.107, and ap-

proximating the resulting exponential function using the Baker–Campbell–Hausdorff

(BCH) approximation formula (Barfoot, 2017), we have:

hϕ(xk+1) ≈ ln([exp([ϕ̄ckck+1
]∧)exp([Rcbδϕckbk+1

]∧)]∨) (4.113)

≈ ϕ̄ckck+1
+ J−1

l (−ϕ̄ckck+1
)Rcbδϕckbk+1

. (4.114)

The definition of the inversed SO(3) left Jacobian J−1
l (·) is given by Barfoot

(2017):

J−1
l (ϕ) =

ϕ

2
cot

ϕ

2
1+ (1− ϕ

2
cot

ϕ

2
)ααT − ϕ

2
α∧, (4.115)

where ϕ = |ϕ| and α = ϕ/ϕ. Based on Equation 4.114, we can compute the

nominal prior and the derivative w.r.t. δxk+1 for the rotation as:

hϕ(x̌k+1) = ϕ̄ckck+1
, (4.116)

∂hϕ(xk+1)

∂δxk+1

=
[
Jl(−ϕ̄ckck+1

)−1Rcb 0 0 0 0 0
]
. (4.117)

We then derive the observation model hp(xk+1) for the translation as below:

hp(xk+1) = pckck+1
= Rc+kbk+1

pbc + pckbk+1
. (4.118)
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By inserting Equation 4.42 into Equation 4.118 and using the equation u∧v =

−v∧u, we have:

hp(xk+1) = Rc+kbk+1
pbc + pckbk+1

(4.119)

= R̄ckbk+1
exp([δϕckbk+1

]∧)pbc + p̄ckbk+1
+ δpckbk+1

(4.120)

≈ R̄ckbk+1
(I + [δϕckbk+1

]∧)pbc + p̄ckbk+1
+ δpckbk+1

(4.121)

= R̄ckbk+1
pbc + R̄ckbk+1

[δϕckbk+1
]∧pbc + p̄ckbk+1

+ δpckbk+1

(4.122)

= R̄ckbk+1
pbc + p̄ckbk+1

− R̄ckbk+1
[pbc]

∧δϕckbk+1
+ δpckbk+1

.

(4.123)

Based on Equation 4.123, we can then compute the nominal prior and the deriv-

ative w.r.t. δxk+1 for the translation as:

hp(x̌k+1) = R̄ckbk+1
pbc + p̄ckbk+1

, (4.124)

∂hp(xk+1)

∂δxk+1

=
[
−R̄ckbk+1

[pbc]
∧ I3 0 0 0 0

]
. (4.125)

To finish the camera-centric EKF update step, we combine the derivation results

in Equation 4.116-4.117, 4.124-4.125, and write h(x̌k+1) and Hk+1 as:

h(x̌k+1) =

 ϕ̄ckck+1

R̄ckbk+1
pbc + p̄ckbk+1

 , (4.126)

Hk+1 =

Jl(−ϕ̄ckck+1
)−1Rcb 0 0 0 0 0

−R̄ckbk+1
[pbc]

∧ I3 0 0 0 0

 . (4.127)

Finally, by inserting Equation 4.126-4.127 into Equation 4.101-4.103, we can

perform the camera-centric EKF update step to get the updated posterior error

states δx̂k+1 and calculate the EKF updated camera ego-motion, based on δx̂k+1

and the propagated nominal states which can be obtained from the camera-

centric IMU preintegration results, i.e., Equation 4.32 and Equation 4.41.
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4.6 Conclusion

In this chapter, we propose DynaDepth, a scale-aware, robust, and generalizable

monocular depth estimation framework using IMU motion dynamics. Specif-

ically, we propose an IMU photometric loss and a cross-sensor consistency

loss to provide dense supervision and absolution scales. In addition, we de-

rive a camera-centric EKF framework for the sensor fusion to fully exploit the

complementary information of camera and IMU, which also provides an ego-

motion uncertainty measure under the setting of unsupervised learning. Exten-

sive experiments support that DynaDepth is advantageous w.r.t. learning abso-

lute scales, the generalizability, and the robustness against vision degradation.



CHAPTER 5

Future Research and Conclusion

5.1 Future Research

End-to-end learning-based methods for SLAM and odometry still under-perform

classical geometric systems by a large margin. It is arguable whether end-to-

end solutions can eventually replace current state-of-the-art optimization-based

SLAM systems, and how to bridge this performance gap is still an open re-

search question for the community. Larger datasets, deeper networks and more

complicated networks such as transformers have been proven successful to lift

the performance in many computer vision tasks, however, further research and

experiment results are still required to verify whether their success can be re-

produced in the field of SLAM and odometry.

Fine-grained integration of deep learning and classical geometric systems presents

another promising line of research. Nevertheless, a consensus on how this

should be completed has not yet been reached. We believe that the fundamental

research logic should be problem-oriented and we should focus on how deep

learning can be introduced to resolve the inherent problems of each specific

geometric method. Though we specifically put our focus on the scale ambiguity

problem in monocular SLAM and odometry systems in this thesis, there remain

many more research topics to be explored along this research direction.
115
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5.1.1 Potential Challenges in Geometric Systems

The potential challenges in geometric systems that might be tackled using deep

learning include:

Monocular-Related Challenges. In contrast to stereo- and LiDAR-based VO

methods, monocular ones provide a more flexible and cost-efficient solution.

However, extra concerns exist due to the limited information.

• Pure rotation: It is well-known that the geometric objectives become

ill-posed for pure rotations, leading to unstable and inaccurate motion

estimates under such cases.

• Scale ambiguity: The geometric relationships established in monocular

VO are known to be valid up to a scaling factor on camera translation

and point depth. The resulting scale ambiguity prohibits the practical

use of monocular systems in real-world applications.

Optimization-Related Challenges. Modern geometric systems usually for-

mulate SLAM as an optimization problem. It is non-trivial to solve this problem

numerically and incorporate factors that violate the underlying assumptions into

the optimization process.

• Dynamic environment: The optimized constraint assumes a static world

model, while the widely existing dynamic objects like pedestrians, cars

and leaves could introduce self-motion of scene points. How to disen-

tangle such motions from the desired camera motion in the optimiza-

tion framework remains an open question.

• Optimization techniques: GN (Gauss-Newton) and LM (Levenberg-

Marquardt) algorithms are widely adopted for optimization, which rely
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on good initialization values to converge to desired outputs. The spe-

cific error choice like MSE or Huber implicitly implies a prior error

distribution, which may also be sub-optimal in practice.

• Parameter tuning and rolling shutter effect: Modern systems also in-

volve a large number of manually selected parameters, which requires

laborious engineering efforts for parameter tuning. Besides, some on-

the-market cameras capture images using rolling shutter, where pixels

might not be exposed at the same timestamp, leading to potential dis-

tortions of fast-moving objects and light flashes.

Challenges in Feature-based VO Methods. Feature-based VO systems suf-

fer when few features are detected or the descriptor fail to extract unique and

representative feature descriptions. Besides, the computation burden of features

raise more concerns on the system design.

• Textureless and appearance-changing area: Modern feature detectors

identify features like corners and edges by resorting to the surrounding

context, while gradient-lacking areas cannot provide enough details for

the detector to take effect. In addition, appearance change such as illu-

mination, weather, and dynamic objects will lead to the inconsistency

of feature description and thus obscure the feature matching process.

• Pixel discretization effect and motion bias: The matched features are

represented by discretized pixels, leading to systematic numerical er-

rors, especially in low-resolution images. Furthermore, the detected

features at the beginning of a sequence could be far away in the space.

The resulting little parallax leads to a poor depth initialization and thus

degrades the accuracy of forward predictions. Though using backward

sequences provides better results in this case, the implementation of

backward prediction presents challenging for real-time systems.
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• Sparse map: Due to the computation burden of feature detection and

matching, current methods can only track a limited number of features,

leading to a sparse map in the space, which limits their applications in

higher-level tasks like obstacle avoidance and navigation.

Challenges in Direct VO Methods.

• Photometric constancy: Direct method assumes the same scene point

should exhibit the same intensity in consecutive frames from different

viewpoints. This strong photometric constancy assumption makes the

system sensitive to factors like lighting conditions, motion blur, camera

exposure and non-Lambertian surfaces that could affect pixel intensi-

ties in different frames.

• Non-convexity w.r.t. image intensity: Optimization in direct methods

involves the derivative of pixel intensity, which is highly non-convex

over the image plane and poses an non-trivial challenge for the opti-

mization algorithm under large motions and bad initialization.

5.1.2 Concluding Remarks

A complete literature review on the current progress of how deep learning has

been used to tackle each challenge is out of the scope of this thesis. Here we

foresee more efforts and advances from both the geometric and learning per-

spectives and from the systematic point of view as our final concluding remarks:

Insights from Geometry for SLAM and Odometry.

• What should be learned? Though many intrinsic problems of geo-

metric systems have been identified and relieved with learning meth-

ods, there still lacks a consensus on which ones are most crucial for
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SLAM and odometry. We expect more empirical comparison and the-

oretical insights to guide future research. Besides, it is promising to

transform more components of geometric pipelines into differentiable

neural modules.

• Multi-aspect integration: Currently each method only focuses on cer-

tain aspects of the challenges, while a more comprehensive system

is desired that could take more aspects of the problem into account

jointly. Moreover, geometry matters in this case by providing neces-

sary constraints that could connect multiple tasks and maximize the

synergy effect. For instance, object detection results could provide

clues for scale, dynamics, and even photometric calibration by mod-

eling their geometric relationship across multi-frames.

Robust Learning for SLAM and Odometry. Apart from identifying and dif-

ferentializing key components in geometric systems, learning robust modules

that can work in the complex environments expects more research efforts, espe-

cially on the data and real-world dynamics.

• Lifelong and active learning: To deal with the ever-changing real-

world environments, it is crucial to design dynamics-robust models and

continuously adapt the models given new observations. It is also ben-

eficial for the system to be aware of distribution shifts and anomalies,

followed by proper human interaction or self-training mechanisms.

• Collaborative and federated learning: Large-scale data is the key for

learning-based methods. While the data collected by single device is

usually limited to certain scenarios and motion patterns, it is possible to

train a more robust system by collaboratively learning a shared model

from multi-devices. To relieve the corresponding computation burden,
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cloud-end training and inference might be explored. Besides, consider-

ing potential privacy issues, we expect federated learning methods will

play a more important role in the near future.

Towards a Practical SLAM and Odometry System. Instead of the method-

ology part, the design and the implementation of complex SLAM and odometry

systems presents more concerns.

• Tackling systematic problems: The parameter tuning under different

scenarios and the real-time performance when incorporating more net-

work modules pose challenges to develop practical systems. To this

end, reinforcement learning and knowledge distillation techniques pro-

vide potential tools to tackle these systematic problems.

• Integration with downstream tasks: SLAM and odometry serves as a

building block for the more complex robotic system. Beyond estimat-

ing camera motion accurately, the integration of the system outputs

with downstream tasks such as obstacle avoidance and path planning

may require specific concerns on the learning procedure and the system

design of the SLAM and odometry systems.

5.2 Summary

In this thesis, we focus on visual simultaneous localization and mapping (SLAM)

and odometry, and how deep learning can be introduced to reform current re-

search pattern. Classical geometric SLAM systems utilize the well-establish

multi-view geometric constraints and formulate this problem in either the filter

or the optimization framework. In doing so, these SLAM and odometry sys-

tems suffer from the inherent limitations of the geometric constraints due to the

complexity of the real-world and easy violation of the underlying assumptions
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behind those constraints. Deep learning provides a promising solution to ad-

dress this issue by implicitly learn certain mappings from sensor measurements

to desired output predictions given large-scale datasets and properly designed

supervision signals. Though deep learning has been successfully applied in nu-

merous computer vision tasks, there still lack a consensus on how this powerful

technique should be incorporated into the SLAM problem. In this thesis, we

study this problem from two alternative perspectives, i.e., end-to-end learning

and fine-grained integration of learning and geometry.

In Chapter 2, we propose a unified information theoretic framework for end-to-

end odometry learning. Specifically, we introduce a variational information bot-

tleneck objective to learn a more informative latent feature that eliminates pose-

irrelevant information. Our proposed framework provides an elegant theoretical

tool for performance evaluation and understanding in information theoretical

language, under which we show that the proposed information bottleneck and

the dimensionality of the latent feature actually upper bound the expected gener-

alization errors. Our results not only provide a performance guarantee but also

practical guidance for model design, sample collection, and sensor selection.

In addition, by modelling the latent feature in a stochastic way, an uncertainty

measure is available without the needs for extra structures or computations.

In Chapter 3, we look into the integration of deep learning and geometric SLAM

systems, and specifically focus on the scale ambiguity of monocular SLAM sys-

tems. We propose VRVO, a monocular visual odometry system that retrieves the

absolute scale from the virtual domain and achieves a scale-aware monocular

VO system during inference. In detail, a scale-aware disparity network is trained

using virtual data from modern photo-realistic simulation environments, which

is then adapted into the real domain using an adversarial training scheme. We

integrate the disparity predictions into a direct VO system by providing depth
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initialization values and constructing virtual stereo objectives. Extensive ex-

periments support that VRVO not only ensures the scale consistency over long

trajectories, but also provides accurate absolute scale metrics.

In Chapter 4, we further explore the problem of learning a scale-aware depth net-

work since we have shown in Chapter 3 that such depth predictions can already

resolve the scale ambiguity problem in monocular SLAM systems. To this end,

we propose DynaDepth, a scale-aware unsupervised depth estimation frame-

work by incorporating the motion dynamics of IMU, a commonly-deployed

sensor in modern sensors suites for autonomous vehicles and robots. We pro-

pose an IMU photometric loss and a cross-sensor photometric consistency loss

to provide dense supervision and absolute scales. In addition, a differentiable

camera-centric extend Kalman filter (EKF) framework is derived to fully exploit

the complementary information from both camera and IMU sensors. The EKF

formulation also provides an ego-motion uncertainty measure, which is benefi-

cial towards a robust system and non-trivial to obtain for unsupervised methods.

Incorporating IMU information during training also benefits the better general-

ization ability and the robustness against vision degradation such as illumination

change and moving objects both intuitively and empirically.
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