6 research outputs found

    BioNetGen 2.2: Advances in Rule-Based Modeling

    Full text link
    BioNetGen is an open-source software package for rule-based modeling of complex biochemical systems. Version 2.2 of the software introduces numerous new features for both model specification and simulation. Here, we report on these additions, discussing how they facilitate the construction, simulation, and analysis of larger and more complex models than previously possible.Comment: 3 pages, 1 figure, 1 supplementary text file. Supplementary text includes a brief discussion of the RK-PLA along with a performance analysis, two tables listing all new actions/arguments added in BioNetGen 2.2, and the "BioNetGen Quick Reference Guide". Accepted for publication in Bioinformatic

    Artificial Wet Neuronal Networks from Compartmentalised Excitable Chemical Media (NEUNEU)

    Get PDF
    This document is a guide to the results of the NEUNEU research program, which is concerned with the development of mass- producible chemical information processing components and their interconnection into functional architectures.This document is a guide to the results of the NEUNEU research program, which is concerned with the development of mass- producible chemical information processing components and their interconnection into functional architectures

    A Spatio-Temporal Model Reveals Self-Limiting FcɛRI Cross-Linking by Multivalent Antigens

    Get PDF
    Aggregation of cell surface receptor proteins by multivalent antigens is an essential early step for immune cell signalling. A number of experimental and modelling studies in the past have investigated multivalent ligand-mediated aggregation of IgE receptors (FcɛRI) in the plasma membrane of mast cells. However, understanding of the mechanisms of FcɛRI aggregation remains incomplete. Experimental reports indicate that FcɛRI forms relatively small and finite-sized clusters when stimulated by a multivalent ligand. By contrast, modelling studies have shown that receptor cross-linking by a trivalent ligand may lead to the formation of large receptor superaggregates that may potentially give rise to hyperactive cellular responses. In this work, we have developed a Brownian dynamics-based spatio-temporal model to analyse FcɛRI aggregation by a trivalent antigen. Unlike the existing models, which implemented non-spatial simulation approaches, our model explicitly accounts for the coarse-grained site-specific features of the multivalent species (molecules and complexes). The model incorporates membrane diffusion, steric collisions and sub-nanometre-scale site-specific interaction of the time-evolving species of arbitrary structures. Using the model, we investigated temporal evolution of the species and their diffusivities. Consistent with a recent experimental report, our model predicted sharp decay in species mobility in the plasma membrane in response receptor cross-linking by a multivalent antigen. We show that, due to such decay in the species mobility, post-stimulation receptor aggregation may become self-limiting. Our analysis reveals a potential regulatory mechanism suppressing hyperactivation of immune cells in response to multivalent antigens

    Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems

    Get PDF
    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. © 2014 Hogg et al

    Spatiotemporal modeling and model restructuration approaches in studies of intracellular signalling pathways

    Get PDF
    The main focus of the research is to understand the complex phenomena of cell transduction pathways and cell biology in a single cell. Mathematical modeling and experimental evaluation are widely used approaches for this kind of research. Firstly, A multiscale framework for protein-protein interaction has been established using Brownian dynamics algorithm. Sit specific feature, steric collision, diffusion, co-localization and complex formation with time and space has been included in this spatial modeling framework. By implementation of the time adaptive feature in this framework, the computation time reduces in an order of magnitude compared with traditional modeling framework. This multiscale Brownian framework has been used for the investigation FcεRI aggregation which is an important signaling pathway for immune cells. Using the spatial modeling framework, FcεRI aggregation in the presence of trivalent antigen showed consistent results with current experimental studies. Secondly, the rule-based modeling approach is an excellent way of performing large biochemical network modeling for a single cell as it considers the site-specific features. However, the major difficulty of rule-based modeling approach is combinatorial complexity. In this study, model restructuring approaches have been applied to overcome this problem for cell signaling pathway modeling. These mechanistic modeling approaches are very effective to model large network of signaling pathways together without compromising the accuracy. Finally, Cell size dependent cellular uptake study carried out using confocal microscopy and flow cytometer. To understand the particle uptake behavior with time and steady state condition, reaction-diffusion and kinetics model has been developed in these work. After a detailed analysis of experimental data and models, it showed that total particle uptake is increasing with cell size, however, particle flux is reducing in larger cells --Abstract, page iv
    corecore