1,723 research outputs found

    A Concurrency Control Method Based on Commitment Ordering in Mobile Databases

    Full text link
    Disconnection of mobile clients from server, in an unclear time and for an unknown duration, due to mobility of mobile clients, is the most important challenges for concurrency control in mobile database with client-server model. Applying pessimistic common classic methods of concurrency control (like 2pl) in mobile database leads to long duration blocking and increasing waiting time of transactions. Because of high rate of aborting transactions, optimistic methods aren`t appropriate in mobile database. In this article, OPCOT concurrency control algorithm is introduced based on optimistic concurrency control method. Reducing communications between mobile client and server, decreasing blocking rate and deadlock of transactions, and increasing concurrency degree are the most important motivation of using optimistic method as the basis method of OPCOT algorithm. To reduce abortion rate of transactions, in execution time of transactions` operators a timestamp is assigned to them. In other to checking commitment ordering property of scheduler, the assigned timestamp is used in server on time of commitment. In this article, serializability of OPCOT algorithm scheduler has been proved by using serializability graph. Results of evaluating simulation show that OPCOT algorithm decreases abortion rate and waiting time of transactions in compare to 2pl and optimistic algorithms.Comment: 15 pages, 13 figures, Journal: International Journal of Database Management Systems (IJDMS

    A model and framework for reliable build systems

    Full text link
    Reliable and fast builds are essential for rapid turnaround during development and testing. Popular existing build systems rely on correct manual specification of build dependencies, which can lead to invalid build outputs and nondeterminism. We outline the challenges of developing reliable build systems and explore the design space for their implementation, with a focus on non-distributed, incremental, parallel build systems. We define a general model for resources accessed by build tasks and show its correspondence to the implementation technique of minimum information libraries, APIs that return no information that the application doesn't plan to use. We also summarize preliminary experimental results from several prototype build managers

    The End of a Myth: Distributed Transactions Can Scale

    Full text link
    The common wisdom is that distributed transactions do not scale. But what if distributed transactions could be made scalable using the next generation of networks and a redesign of distributed databases? There would be no need for developers anymore to worry about co-partitioning schemes to achieve decent performance. Application development would become easier as data placement would no longer determine how scalable an application is. Hardware provisioning would be simplified as the system administrator can expect a linear scale-out when adding more machines rather than some complex sub-linear function, which is highly application specific. In this paper, we present the design of our novel scalable database system NAM-DB and show that distributed transactions with the very common Snapshot Isolation guarantee can indeed scale using the next generation of RDMA-enabled network technology without any inherent bottlenecks. Our experiments with the TPC-C benchmark show that our system scales linearly to over 6.5 million new-order (14.5 million total) distributed transactions per second on 56 machines.Comment: 12 page

    A unified concurrency control algorithm for distributed database systems

    Get PDF
    We present a unified concurrency-control algorithm for distributed database systems in which each transaction may choose its own concurrency control protocol. Specifically, they integrate two-phase locking, timestamp ordering, and precedence agreement into one unified concurrency-control scheme. They show the correctness of the scheme and study the problem of selecting the best protocol for each transaction to optimize system performance.published_or_final_versio
    • …
    corecore