
Title A unified concurrency control algorithm for distributed database
systems

Author(s) Wang, CP; Li, Victor OK

Citation
The 4th International Conference on Data Engineering (ICDE
1988), Los Angeles, CA., 1-5 February 1988. In Conference
Proceedings, 1988, p. 410-417

Issued Date 1988

URL http://hdl.handle.net/10722/158031

Rights Creative Commons: Attribution 3.0 Hong Kong License

A UNIFIED CONCURRENCY CONTROL ALGORITHM

FOR DISTRIBUTED DATABASE SYSTEMS *

C. P. Wang and Victor 0. K. Li

Department of Electrical Engineering

University of Southern California

Los Angeles, CA 90089-0272

A B S T R A C T

We present a unified concurrency control algorithm for dis-
tributed database systems in which each transaction may choose
its own concurrency control protocol. Specifically, we inte-
grate Two-Phase Locking, Timestamp Ordering, and Precedence
Agreement into one unified concurrency control scheme. We
show the correctness of the new scheme and study the problem
of selecting the best protocol for each transaction in order to
optimize system performance.

1 INTRODUCTION

Many concurrency control algorithms have been proposed for
distributed database systems[3]. Most of them fall into two cat-
egories, namely, Two-Phase Locking (2PL)[8,19,22] and Time-
stamp Ordering (T/0)[2,4,5,9,17]. 2PL, which was first designed
for centralized systems and later applied to distributed ones, has
the merit of simplicity but suffers from the distributed dead-
lock problem [1,6,11]. On the other hand, T/O avoids deadlocks
by enforcing a special execution order (timestamp order) among
transactions, which may cause transaction restarts and degrada-
tion of system performance. In [24], the Precedence Agreement
(PA) algorithm is proposed. This concurrency control algorithm
is free from deadlocks and restarts. However, communication
cost increases as the system load increases.

The best concurrency control algorithm for a particular ap-
plication depends on the system parameters [10,14,16,20]. For
example, in an environment where each transaction only accesses
one data item through a write operation, 2PL outperforms T/O
since no deadlocks may occur. On the other hand, when sys-
tem load is heavy and transaction size (in terms of the number
of data items accessed) is s m a l l (but bigger than one), T/O is
superior to 2PL. Many parameters may affect the performance
of a concurrency control algorithm. Some of them are (1) trans-
action arrival rate, (2) the number of read operations versus the
number of write operations, (3) transmission delay, (4) the num-
ber of data items requested by each transaction, (5) the cost of
restarts, (6) deadlock detection time and cost, etc.

To implement a distributed database system, the system de-
signers may estimate the system parameters beforehand and pick

‘This work was supported in part by the United States Department of
Defense Joint Services Electronics Program under Contract No. F49620-
85-C-0071, and by the National Science Foundation under Grant No. DCI-
8519101

the best concurrency control algorithm for that system. From
then on, every transaction in the database must follow that al-
gorithm. We call this type of concurrency control static con-
currency control. Most existing concurrency control methods
are static. The major drawback is inflexibility. The originally
chosen algorithm may not always be the best as the system pa-
rameters change. In addition, the term ‘the best concunency
control algorithm’ is really transaction dependent. Static con-
currency control can only capture the average behavior but fails
to reflect the individual differences among transactions.

The alternative is dynamic concurrency control. In this case,
depending on the system states and the transaction types, differ-
ent concurrency control methods are used for different transac-
tions in an attempt to improve performance. There are several
design problems associated with dynamic concurrency control.
These include: (1) What are the candidate concurrency con-
trol algorithms? (2) How does one integrate these algorithms
together and still preserve their correctness? (3) What are the
system parameters relevant to choosing the best concurrency
control algorithm and how does one determine them? (4) Given
the relevant system parameters, how does one choose the best
concurrency control method?

This paper presents the design of a dynarmc concurrency
control system which integrates 2PL, T/O, and PA. Our design
consists of two steps:

1. Algorithm Integration: The goal is to design an inte-
grated system such that each transaction can choose one
of the above three algorithms. Our approach includes
defining a unified model for distributed concurrency con-
trol algorithms, called the Precedence- Assignment Model
(PAM)[24]. Based on this model, the problem of unifying
2PL, T/O and PA is reduced to the distributed computa-
tion of two functions. Then we solve the distributed com-
putation problems and prove the correctness of our unified
algorithm.

2. Algorithm Selection: A cost function is defined to measure
the loss of system throughput due to the requests issued by
a transaction under its concurrency control method. The
concurrency control algorithm will be chosen to minimize
this cost function. We will discuss the evaluation of the
cost function.

This paper is organized as follows. We describe the dis-
tributed database model and the precedence assignment model
in sections 2 and 3, respectively. In section 4, the integration

CH2550-2/88/0000/0410$01.00 @ 1988 IEEE
410

of concurrency control algorithms is presented. The selection of
the best concurrency control algorithm is discussed in section 5.
In section 6, we conclude with a list of future research tasks.

2 SYSTEM MODEL

A database consists of a finite set of logical data items D = {
D1, D?, ...}. A transaction is a sequence of logical read/write
operations requested by the user. We assume that a legal trans-
action consists of three phases, namely, the read phase, the local
computing phase and the write phase. The read phase must
be executed first and consists of operations which read from the
database to the user’s local memory. The local computing phase,
consisting of all local computations, is then executed. Finally,
during the write phase, data is copied from the user’s memory

back to the database. For database correctness, a transaction
must either be completely executed or not executed at all.

Each logical data item Di can be stored redundantly at dif-
ferent computer sites in the network. The physical copies of Di
are denoted Dij . Operations which access physical data item
D i j are physical reads r(Dij), or physical writes w(Dij). To
execute a transaction, the system first translates all the logi-
cal operations into their corresponding physical operations. The
physical operations are sent to the sites where the physical data
items are located and implemented there.

Let T = { t i , t2, ...} be a set of transactions. An execution
of T is the implementation of all operations associated with all
the transactions in T on the database. An execution E is serial
if no two transactions are executed concurrently at any time.
An execution is said to be serializable [12] if the effect of the
execution is equivalent to some serial execution.

Two logical (physical) operations conflict if they access the
same logical (physical) data item and one of them is a write
operation. We model the execution of transactions by a set
of logs. There is one log associated with each physical data
item. The log indicates the order in which physical operations
are implemented on that data item.

The properties of serializable execution have been extensively
studied [3,12]. An important result is :

Theorem 1: [12,13,18] Let T be a set of transactions, An
execution E of T is serializable if there exists a total order on T
such that if Oi and Oj are conflicting operations from distinct
transactions ti and tj, Oi is implemented before Oj in any log
L l , L2, ... Lm if and only if ti < tj in the total order.

An execution is conflict serializable if it satisfies the condi-
tion stated in Theorem 1. The total order defined in Theorem 1
is called the serialization order. All existing concurrency control
algorithms use conflict serializability as their correctness crite-
rion.

3 THE PRECEDENCE-ASSIGNMENT MODEL

PAM was developed to model concurrency control algorithms in
distributed databases. It is shown that 2PL, T/O and many
other existing concurrency control algorithms may be modeled
by PAM. In this section, we will describe PAM.

3.1 THE CONCURRENCY CONTROL SUBSYS-
TEM

The concurrency control subsystem is modeled as follows:

1. Request Issuer (RI): Located at each user site is a request
issuer. RI takes user transactions as its input and sends
requests to data sites.

2. Data Queue (Queue): There is a data queue for each phys-
ical data item. Each entry in the queue is a user request.
The request a t the head of the queue has the right to access
the data.

3. Data Queue Manager (QM): There is a data queue man-
ager for each data queue. The data queue manager com-
municates with the RI’s and enforces the order ofexecution
of requests on the data queue.

Each transaction ti is sent to one of the RI’s, say 5. Let
01, 02, ... , on be the read or write operations of ti. For each
Ok, 1 sends a read or write request to the corresponding data
queue manager accessed by %. Ok cannot be implemented until
its request is granted by that data queue manager.

3.2 PRECEDENCE ASSIGNMENT AND
ENFORCEMENT FUNCTIONS

The concurrency control subsystem must serve two major func-
tions:

1.

2.

3.3

Precedence Assignment: Assigns a precedence to each re-
quest accessing the same data. That is, for each data Dj,
there is a non-empty set SPj together with a total ordering
<j on SPj. (SPj, <j) is called the precedence space for Dj.
Let 0. J be the set of all operations accessing Dj. There
is a one-to-one function ASj: Oj -+ SPj computed by the
concurrency control subsystem which assigns a precedence
(an element of SPj) to each operation accessing Dj.

Precedence Enforcement: Controls the implementation of
operations on each data item to satisfy the following two
conditions:

El: Suppose 01 and 02 are conflicting operations access-
ing Dj. IfASj(o1) <j ASj(o2), then 01 is implemented
before 02; else 02 is implemented before 01.

E2: There exists a serialization order on the set of transac-
tions such that the precedence order of two conflicting
operations follows the Corresponding transactions’ se-
rialization order.

MODELING 2PL AND T/O

In this section, we illustrate how to use PAM to model 2PL and
T f O .

2PL
Static 2PL is considered in this paper. For 2PL, the requests

are handled in a first-come-first-served (FCFS) manner a t each
data queue. The precedences are assigned to operations accord-
ing to their order of arrival. (El) is satisfied by the assignment
function itself as long as the data queue is FCFS and conflict-
ing operations are not allowed to be implemented concurrently.
(E2) is satisfied by the following locking protocol:

1. A request is granted a lock if all conflicting operations with
lower precedences have been implemented (locks have been
released).

41 I

2. The operations in a transaction can be implemented only Q W) .
if all the requests for that transaction are granted. (d) If grants are received from each QM(j), jump to (g).

Some transactions may be blocked by the locking protocol
forever, i.e., there is a deadlock. Ignoring deadlocks, the locking
protocol together with (El) implies (E2).

To sum up, 2PL can be specified by

1. Precedence Assignment: the arrival order at the data
queue.

2. Precedence Enforcement: (E l) is implied by the assign-
ment function; (E2) is satisfied by the locking protocol.

T/O
There are several versions of the T/O algorithm. Here we

consider the Basic T/O algorithm [3] only. In Basic T/O, all
the data items have the same precedence space, which is the
set of timestamps. Operations from the same transaction are
assigned the same precedence (or timestamp). This assignment
function satisfies (E2) automatically as the serialization order
can be defined to be the timestamp order of the transactions.
(E l) is enforced by rejecting requests which arrive out of time-
stamp order.

In summary, T/O can be specified as:

1. Precedence Assignment:
stamp to each operation.

Assign the transaction’s time-

2. Precedence Enforcement: (E2) is automatically satisfied,
(El) is enforced by transaction restarts.

3.4 THE PRECEDENCE AGREEMENT ALGO-
RITHM BASED ON TIMESTAMPS

PA decides the precedence for each operation through negoti-
ation with the particlpating RI’s and QM’s, and is free from
deadlocks and restarts. The following is a description of one
version of PA based on timestamps.

Each transaction ti is assigned a timestamp tuple (TSi,
INTi), where TSi is the timestamp for ti and INTi is the back-
off interval associated with ti. This algorithm works just like
T/O except when a request arrives at the data queue and finds
some conflicting operation with a later timestamp has already
been granted. Instead of rejecting the newly arrived request, the
data queue for data item j will badtoff the new request’s time-
stamp, i.e., !ind the minimum TS’ij which is acceptable by the
T/O protocol, with TS’ij = TSi + k. INTi, k E N (the natural
numbers). Then TS’ij is sent back to the request issuer q. ’i
will either receive grants from all the data queues accessed by ti
(corresponding to the no rejection case in T/O) or receive some
backoff timestamps, TS’im’s. In the former case, the transaction
can be executed. In the iatter case, the transaction will backoff
its timestamp to max- TS’ij. This new timestamp will be sent
to all the data queues accessed by ti to update each request’s
timestamp. Now t i can wait for the grants and begin execution.

J

We state the algorithm formally:

1. For each ti, 5 performs the following:

(a) Generate Qi=(TSi, INTi).
(b) Send requests together with Qi to each data site Dj

(c) Wait until either a grant or TS’ij is received from each
accessed by the current transaction.

(e) Let TS’i be maxj TS’ij. Send TS’i to each QM(j).

(f) Wait until lock grants arrive.
(9) Perform local computing (the data read are attached

to the corresponding lock grant).
(h) Send lock release to each QM(j).

2. The data queue manager QM(j) for Dj performs the fol-

(a) Keep track of two variables, R-TS(j) and W-TS(j),
which are the biggest timestamp of granted read re-

(b) Receive request qi and timestamp tuple Qi from ri.
(c) Depending on whether is a read or write request

do:
read: If TSi > W-TSj, let TSi be qi’s timestamp

and mark qi ‘accepted’; insert qi in QUEUE(j).
Otherwise, calculate TS’ij = TS; + k.INTi, k E
N, such that TS’ij > W-TS(j); let TS’ij be qi’s
timestamp and mark qi ‘blocked’; insert qi in
QUEUE(j); send TS’ij to ri.

write: If TSi > W-TSj and TSi > R-TSj, let TSi
be qi’s timestamp and mark qi ‘accepted’; in-
sert qi in QUEUE(j). Otherwise, calculate TS’ij
= TSi + k.INTi, k E N, such that TS’ij > max
{W-TS(j), R-TS(j)}; let TS’ij be qi’s timestamp
and mark qi ‘blocked’; insert qi in QUEUE(j);
send TS’ij to ri.

(d) When TS’i is received from ri, update the timestamp
of qi and mark qi ‘accepted’; re-insert qi into the
proper position in QUEUE(j).

lowing:

(e) Queue(j) works as follows:
i. All entries are sorted in increasing timestamp or-

ii. Define HD(j) to be the request in QUEUE(j) such
smaller

der.

that all requests in QUEUE(j) with
timestamps have already been grant e d.
A. If HD(j) is marked ‘blocked’, wait.
B. If HD(j) is a read request marked ‘accepted’,

and if all previously granted write requests
have been released, then set R-TS(j) to the
timestamp of HD(j). Send grant to the trans-
action issuing HD(j).

C. If HD(j) is a write request marked ‘accepted’,
and if all previously granted requests have
been released, then set W-TS(j) to
the timestamp of HD(j). Send grant to the
transaction issuing HD(j).

D. Otherwise, wait.

PA can be modeled by PAM as follows:

1. Precedence Assignment: Through the PA protocol, a single
precedence is assigned to each request of a transaction.

2. Precedence Enforcement: The precedence assignment
function guarantees both (El) and (E2).

The correctness of PA will be shown in the next section.

412

4 THE UNIFIED CONCURRENCY CONTROL
SYSTEM

We have already demonstrated the precedence assignment and
enforcement functions for 2PL, T/O, and PA. To unify these
algorithms, we have to unify their assignment functions and then
their precedence enforcement functions.

4.1 UNIFIED PRECEDENCE ASSIGNMENT
FUNCTION

The assignment function for 2PL resides at each data site, and
assigns the next available precedence to an incoming request.
The assignment function for T/O is a t the request issuers, and
assigns the timestamp of each transaction to all of its requests.
The assignment function for PA is more complicated: The ini-
tial timestamp is decided at the request issuer; then each data
site decides a feasible timestamp; finally, collecting all the fea-
sible timestamps, the request issuer decides the timestamp for
all requests of the current transaction. To unify these three al-
gorithms, we first define the unified precedence space (UPS) at
each data queue. UPS is the timestamp space and the prece-
dence is assigned as follows: The precedence for T/O and PA
requests are their respective timestamps. The precedence for a
2PL request q accessing data item j is the biggest timestamp
which has ever appeared in data queue j before q’s arrival. This
ensures the new request is inserted at the tail of the queue and
all 2PL requests follow the FCFS rule. The precedence order is
defined as follows:

1.

2.

3.

4.2

Compare the value of the timestamps f is t .

If it is a tie, compare the site id’s of the transactions.
A 2PL controlled transaction is regarded as having the
biggest site id.

If still tied, then either both requests are 2PL or both are
not. If both are 2PL transactions, compare their arrival
order at the data queue; otherwise, compare their transac-
tion id’s.

UNIFIED PRECEDENCE ENFORCEMENT
FUNCTION

In the unified system, many types of requests may appear in
each data queue. The enforcement function must enforce both
(El) and (E2) under all possible situations. Some requests which
may be granted by individual enforcement functions cannot be
granted by the unified enforcement function. For example, in
pure T/O, a granted read request never prevents write requests
with bigger timestamps from accessing the data. But the follow-
ing example shows that if T/O is used together with 2PL, then
sometimes read requests must lock the data to preserve (E2).

Example: Consider three data items x, y, z, and three trans-
actions t i , t2, t3. t i and t2 are controlled by T/O and t3 is
controlled by 2PL. The operations for the transactions are:

t l : r l (4 Wl(Y).

t3 : r3(z), w3(x).
t2 : r2(Y), w2(z).

The precedence order of these requests in the data queue

Queue(x): r1 < w3.
Queue(y): r2 < w1.
Queue(z): r3 < w2.

may be:

Both r2 and w1 are T/O type requests. Therefore, w1 will
be implemented before t2 is executed. But then all three trans-
actions will be executed and the execution is not serializable.

One solution to the unified enforcement function is to use
locking for all requests, i.e., before a transaction leaves the sys-
tem, lock releases must be sent to each data queue accessed by it
and a request cannot be granted until all previously granted con-
flicting requests have been released. This method, while sacrific-
ing the degree of concurrency for T/O transactions, guarantees

We now introduce a more sophisticated approach, called
semi-locks. This type of locks preserve (E2) without reducing
the degree of concurrency for T/O. Intuitively, a data is semi-
locked if it is considered unlocked by the T/O protocol but must
be treated as locked by 2PL and PA. The following semi-lock
protocol decides, before a data item is unlocked, when the lock
can become a semi-lock, i.e., ready for T/O type requests:

W) .

1. There are four possible locks: read (RL), write (WL), semi-
read (SRL), and semi-write (SWL).

2. Two locks conflict if they lock the same data item and
at least one is a WL or SWL. A lock is pre-scheduled if
at least one conflicting lock is granted earlier but not yet
released. All other locks are called normal locks. The
following rules describe when HDU) may be granted and
what kind of locks are granted:

If HD(j) is a read request issued by a 2PL or PA
transaction, then it can be granted a RL if all pre-
viously granted WL’s and SWL’s on the data j have
been released.
If HD(j) is a write request issued by a 2PL or PA
transaction, then it can be granted a WL if all previ-
ously granted locks on data j have been released.
IfHD(j) is a read request issued by a T/O transaction,
then it can be granted a SRL if all previously granted
WL’s on data j have been released.
IF HD(j) is a write request issued by a T/O trans-
action, then it can be granted a WL if all previously
granted RL’s and WL’s on data j have been released.
If HD(j) was once granted a pre-scheduled lock, which
later became normal, then a normal lo& grant will be
issued for HD(j).

3. Before execution, 2PL and PA transactions must hold
proper RL’s or WL’s. After execution, lock releases are
sent to the locked data item.

4. Before execution, a T/O transaction must hold a SRL on
each data item read by it, and a WL on each data item
written by it. After execution, it sends lock releases to
the locked data if it did not get any pre-scheduled locks.
Otherwise, it transforms all its locks into semi-locks (RL
+ SRL, WL -+ SWL). At this point, the transaction is
considered executed. But the request issuer will continue
to collect lock grants for this transaction until there is one
normal lock grant received from each data item accessed
by this transaction. Then lock releases are sent to the data
locked by that transaction.

The semi-lock protocol preserves the enforcement functions
for 2PL and PA in the following sense: If the system runs 2PL
(PA) transactions only, then the unified enforcement function

413

works in the same way w the enforcement function for 2PL (PA).
On the other hand, when the system runs T/O only, the unified
enforcement function results in lock release messages which are
not generated by the T/O enforcement function. But these mes-
sages are irrelevant in the sense that no T/O transactions need
these messages for synchronization.

4.3 CORRECTNESS

We will show the correctness of the unified concurrency control
system. By doing so, the correctness of PA is also proved since it
can be regarded as a special instance of the unified scheme where
all transactions use PA as their concurrency control algorithm.

First define when an operation is implemented: Operations
of 2PL and PA type transactions are implemented when the cor-
responding locks are released; a T/O operation is implemented
when the operation changes a lock to a semi-lock on the data or,
if the lock is released.

Let <s be a binary relation on the set of executed transac-
tions defined as follows: Let ti and t j be two executed transac-
tions, ti <s tj iff (1) ti = t . or (2) there is a pair of conflicting
operations oi and 0- issued by ti and t. respectively, and oi is
implemented before oj. An execution i", conflict serializable iff
the conflict graph induced by <s is acyclic[l2,18], i.e., <s is a
partial order.

Theorem 2: Let T be a set of transactions executed under
the unified concurrency control algorithm. <s must be a partial
order on T. In other words, the execution is conflict serializable.

Proofi Suppose <s is not a partial order on T. Then there
is a cycle t l <s t2 <s ... <s tn <s t l . In addition, t l , ..., tn
cannot all be T /O type transactions since the semi-lock protocol
implements T/O type operations according to their timestamp
order. Without loss of generality, assume tn is a 2PL or PA type
transaction. The semi-lock protocol requires tn to get all normal
locks on all data items accessed by it. This implies tn-l has to
receive all normal locks and to release all of these locks, either
semi or normal, before tn can release any locks. By induction,
t i has to release all the locks before tn releases any lock. But
t n is of 2PL or PA type and tn 's t l implies tn releases some
locks before t l . This is a contrahction.

J

Q. E. D.
Theorem 2 shows that if the unified system allows a set of

transactions to be executed, the execution must be conflict seri-
alizable. Now we want to consider the situation when the system
is blocked. It will be shown that if the system is blocked, there
must be at least one 2PL type transaction in the wait-for cycle,
that is, T/O and PA never block the system by themselves.

Definition 1: At time U, if there are requests not imple-
mented yet, psman(u) is the smallest precedence of such re-
quests; else pSmd(u) is undefined.

Let P be the set of all possible precedences, i.e., extended
timestamp space, and let T be the set of all transactions. Let
P T be the set of precedences assigned to requests associated
with the transactions in T. Our proof starts with a special case
of PT and will be generalized.

Lemma 1: If PT is isomorphic to the order of N, then the
system is blocked if and only if 3 U such that V x >U, p s d (x)
= C where C is a constant.

Proof: (e) In any data queue, different requests have dif-
ferent precedences. Therefore, the number of requests whose
precedence is C is finite. At least one of these requests, say

rq, cannot be implemented in finite time, else p s d () will be
changed to a value different from C. Therefore, the transaction
issuing rq is blocked.

(3) If no such C exists, there are two cases: (a) 3 U such
that V x >U, psmd(x) is undefined or (b) V U, 3 x > U such that
psmall(u) # P,mau(x).

Case (a) implies the system becomes empty after finite time.
Therefore, no transaction is blocked. Case (b) implies that
psman() is changed for infinitely many times. Since the number
of requests with the same precedence are finite, psmau() cannot
be changed to the same value for infinitely many times. This
implies the range of p smd() is infinite. Therefore, if at time U,

a request rq with precedence p is not implemented yet, there is
time x > U and psmau(x) > p. This implies at time x, (1) rq
has been implemented, or (2) rq is of T/O type and has been
rejected, or (3) rq is of PA type and it has been assigned a new
backoff precedence. It is clear that if case (1) or (2) occurs,
the transaction issuing rq is either executed or restarted. If (3)
OCCWS, rq's precedence is backed off to a bigger one. But even-
tually p s d () will be greater than this precedence because PA
can backoff the precedence of rq at most once. Then rq will
be implemented and the transaction issuing rq will be executed.
Thus we conclude that all transactions will be either executed
or restarted after finite time, i.e., no blocking occurs.

Q. E. D.
Theorem 3: Assume the precedence order on PT is iso-

morphic to the order of N, then the system is blocked only if the
blocked request with the smallest precedence is from a 2PL type
transaction.

Proof: From Lemma 1, the system is blocked if and only if
3 U, such that V x > U, psmd(x) = C. There are three cases:

1. psmall() is owned by a request issued by a T/O type trans-
action t: p s m d () is the timestamp o f t . If t is rejected,
then p s m d () will be updated to another value. If t is not
rejected, all of its requests have precedence p s d () which
is the smallest precedences not yet implemented. In short,
t can be executed and psm& is updated to another value.
We reach contradictions in both cases, thus p s m d () can-
not be owned by T/O type requests.

2. pSed() is owned by a request issued by a PA type trans-

(a) psmall() is the original timestamp oft: t can receive
either lock grants or back-off precedences from all the
data accessed by it. Then either t can be executed
or t will back off its precedence to the biggest of the
back-off precedences received.

t can receive
back-off precedences from all the data accessed by
it. Similarly, t can be executed or t will back off its
precedence to the biggest of the back-off precedences
received.

action t. There are two cases:

(b) psmall() is the back-off precedence:

In either case, psmall() will be changed. Thus p s m d ()
cannot be owned by a request issued by PA type transac-
t ions.

3. p s m a ~ () is owned by a request issued by a 2PL type trans-
action t.

We conclude that case (3) must be true.

Q . E. D.

414

Corollary 1: PA is correct and free from deadlocks and
rejections.

Proof: Theorem 2 shows PA will output a conflict serial-
izable execution. Theorem 3 shows every transaction will be
executed eventually. In addition, from the definition of PA, no
transactions will be restarted.

Q. E. D.
Corollary 2: Any deadlock cycle must contain at least one

2PL type transaction.
Proof: This is also a consequence of Theorem 3. The ratio-

nale is as follows. Our unified precedence assignment functions
have the property that the removal of 2PL transactions will not
affect the precedences assigned to T/O and PA type requests.
Thus the removal of 2PL transactions will not destroy any dead-
lock cycles which contain T/O and PA transactions only. But
the removal of 2PL transactions does guarantee freedom from
blocked transactions and hence deadlock freedom. Thus we con-
clude there must be at least one 2PL transaction in each deadlock
cycle.

Q. E. D.
The assumption that PT is isomorphic to N can be relaxed

if, during any finite period of time, only finitely many transac-
tions may arrive. Ignoring 2PL type transactions, the timestamp
space is isomorphic to N since the values of timestamps are from
N and only finitely many T/O or PA type transactions can have
the same timestamp value. The key problem which prevents PT
from being isomorphic to N is that there are potentially infinitely
many 2PL requests assigned the same timestamp. But this prob-
lem can be fixed. Conceptually, we can modify the precedence
assignment function of 2PL to prevent infinitely many requests
assigned the same timestamp and still preserve the precedence
order of requests in the data queue. This modification will make
P T isomorphic to N without changing any implementation order
of operations.

The 2PL precedence assignment function ASj for data j is
modified as follows: If there are infinitely many T/O or PA type
requests entering Queue(j), AS. does not need to be changed J
since the arrival of these requests will stop ASj from assign-
ing the same precedence. If, on the other hand, there are only
finitely many T/O or PA type requests entering Queue(j), ASj
remains unchanged until the T /O (or PA) request Omax with
the largest timestamp TSmU arrives. Then ASj changes and
assigns TSm=+m to the mth arriving 2PL requests after the
arrival of omax. The new AS. will only assign a timestamp, if
ever, finitely many times.

J

5 D Y N A M I C C O N C U R R E N C Y CONTROL

In the previous section, the unified concurrency control system
is presented. We now discuss how to select the most profitable
concurrency control algorithm for each transaction.

Before developing the selection method, we define our per-
formance measure to be the average transaction system time S
and study how the transaction arrival rate, A, and the number
of data items accessed by each transaction st, affect S . Our sim-
ulation results [23] show that 2PL performs well when X is low.
When X is high, although the number of transactions directly
involved in deadlocks does not increase very much, S goes up
dramatically since more transactions are blocked by deadlocked
transactions. For T/O, S grows steadily as X increases. It out-

performs 2PL when X is high. However, as is also shown in [lo],
T/O becomes worse than 2PL and PA as st increases. Appar-
ently, this is due to the significant increase of restart probability.
PA is a compromise between 2PL and T/O. It performs like 2PL
when Xis low and like T/O while X is high. When X is moderate,
it outperforms both 2PL and T/O.

5.1 THE SYSTEM T H R O U G H P U T LOSS FUNC-
T I O N

One possible method for selecting concurrency control algo-
rithms is as follows: Each request issuer keeps a table of average
system time versus transaction types and concurrency control
method chosen. For each newly arrived transaction, the request
issuer picks the concurrency control algorithm which minimizes
the average system time. However, we believe this method does
not perform well for the following reasons:

1.

2.

Minimizing the system time for individual transactions is
not equivalent to optimizing S.

This method is biased towards 2PL since once deadlocks
occur, not only is the system time of deadlocked transac-
tions prolonged, but also the system time of all blocked
transactions. Thus 2PL transactions tend to shorten their
own system time by degrading other transactions’ perfor-
mance.

The method we have adopted, instead of considering average
system time, is to estimate the system throughput loss, STL.
Our method picks the concurrency control algorithm for each
transaction to minimize STL. Before discussing STL any fur-
ther, let us introduce the following notations and definitions:

1.

2.

3.

4.

5.

6.

The current transaction t has m(t) read requests,
TI,~z,.-.,T,(~), and n(t) write requests, QI,Q~,*.*,~~(~).

Let D(rq) denote the data item accessed by request rq.

The write throughput of a data queue, which is the av-
erage number of write locks granted per unit time, is de-
noted Xw(j) . Similarly, the read throughput is denoted
A v (j) . Let A, (A,) denotes the throughput averaged over
all Xw(j)’s (L(j)’s).

A A , the system throughput, is the summation of all Xr(j)’s
and X,(j)’s.

The fraction of read requests among all requests is Q v .

K is the average number of requests per transaction.

We also make the following assumptions and approximations:

1. In computing STL, we assume a transaction gets all its
locks at the same time, and all its locks are released at the
same time.

2. The output process at each data queue (the process of lock
releases) is Poisson.

Now we consider STL(t) , the STL due to t, under our as-
sumptions. Assume a request rq locks a data for U time units,
what is the throughput loss on that data? This depends on what
kind of lock T Q has. If it is a read lock, then during this period of
time, no write locks can be granted. Potentially, the throughput

415

loss is X,D(rq) U. On the other hand, if it is a write lock, the
loss is (X,D(rq) + XrD(rq)) U. But there are other losses due
to rq: Suppose that after rq gets its lock, another request rq'
gets a lock on data k, but the transaction issuing rq' also issues
a request blocked by rq, or blocked by some request blocked by
rq, then rq' is blocked until rq releases the locks. Therefore,
STL(t) is difficult to calculate or measure in general. Thus we
use the following approximation.

Suppose transaction t starts to hold all (m(t) + n(t)) locks
at time 0, the throughput loss, At, is given by

m(t) 4)
~t = L D (r i) + LD(qi) + A r D (q i)

i=l i=l

Now, the rate a t which requests get locksis AA-&. A request
to obtain a lock will be blocked if the transaction issuing this
request also issues a blocked request. A random transaction, on
the average, issues K requests. Each request is blocked with
probability $. Assuming that the probability of blocking at
different data site are independent, the rate at which requests
obtaining locks is blocked is

I f a request gets a lock and blocks the data, the new through-
put loss depends on whether it gets a read lock or a write lock.
Again, we approximate it by taking the average, that is, the new
throughput loss is At + Aw + (1 - Qr) + A,.

Now we are ready to solve STL(t) recursively by defining
the following functions. Let STL'(A~,,,, U) represents the STL
during period of U time units where the initial throughput loss
is There are two cases:

1. During this period, no other new lock grants block any
data queue; then the STL is Aloss U.

2. At time +, a new lock grant blocks a data queue; then the
STL is Aloss - I + STL'(Aioss + A, + (1 - Q,) . A,, U - 2).

Thus STL' can be defined recursively as follows:
If boss 2 AA,

STL'(&,,,, U) = AA ' U;

else

S T L ' (X l o s s , U) = (1 - ezp(-Ablock . U)) . Aloss

f [Ablock eZP(-Ablock * 2)

' (A o s s . z + S T L ' (X l o s s + Anew, U - ~)) d +

U

where Xblock = (AA - ~ l ~ ~ ~) (1 - (1 - *lK-l)

Note that STL' can be evaluated efficiently through Dynamic
and Anew = X ~ o s s + Xw + (1 - Qr) * hr.

Programming techniques [7].

5.2 SELECTION BASED O N STL

Now we describe the selection method based on STL. Our
selection is based on the following parameters which can ei-
ther be collected periodically or estimated through analytical
methods[14,15,21,25]:

1. For 2PL transactions:

(a) U z p ~ : average lock time if a request is not aborted.

(b) UiPL: average lock time of an aborted request.

(e) PA: probability of abortion of a transaction due to
deadlocks.

2. For T/O transactions:

(a) UT/O: average lock time if a request is not aborted.
(b) U$/o: average lock time if a request is aborted.

(c) P,: the probability of rejection of a read request.
(d) P,!: the probabdty of rejection of a write request.

3. For PA transactions:

(a) UPA: average lock time if a request is not backed off

(b) UbA: average lock time if a request is backed off later.

(c) PE: the probability a read request is backed off.
(d) PA: the probability a write request is backed off.

Let t be a transaction as described in the last section, we
will estimate STL due to t for 2PL, T/O and PA, by the STL'
function just defined.

later.

2PL

solved by the following equation:
The STL due to t under 2PL, denoted STL~PJ,(~) can be

S T L Z ~ L (~) = (1 - P A) . STLzp~(t1 t is not aborted)
+PA S T & p ~ (t l t is aborted),

or

STLZPL(t) = (1 - P A) ' STL'(At, UZPL)

+PA * (S T & P L (~) + STL'(At, u;p~))
T/O

Similarly, S T L T / O (~) can be solved by the follow equation:

STLT/o(t) = (1 - Pr)m(t) * (1 - . STL'(&,UT/O)
+(l- (1 - Pp)m(t) (1 - P,!)"'") - (STL'(X;,U$/,)

+STLT/O (t) 1
Here A; is the average system throughput loss due to blocking
by t ' s requests given that at least one oft's requests is rejected.
A; can be solved by the following equation:

m(t) n(t)

(1 - p r) L D (T i) + (1 - p,!) L D (q i) + ArD(qi) =

(1 - (1 - Pr)m(t)(l - p;)"'")X; + (1 - Pr)m(t'(l - P,!)n("X*
i= l i=l

In the above equation, The left hand side is the s u m of the
expected throughput loss due to each request of t. The right
hand side calculates the average throughput loss by conditioning
on whether t is rejected or not. Thus A; is given by

416

STLpA(t) = (1 - pB)m(t)(l - ph)n(t)STL'(&, U P A)
+(1 - (1 - P B) " (~) (~ - Ph)n(t))(STL'(X:, U b A)
+STL'(&, UPA))

where A: is

1 A t = 1 - (1 - pB)m(t). (1 - pf,)n(t) * ((1 - PB)

4') " (t)
. L D (r i) + (1 - PA) * CLP(qi) + A T D (q i)

,=1 i= l

-At * (1 - PB)m(t) . (1 - ph)n(t))

In our selection method, for a new transaction t, STLpL(t) ,
STL,,,(t), and STLpA(t) are calculated separately. The dgo-
rithm with the smallest STL value is chosen to be t's concur-
rency control algorithm. To speed up the performance of the
selection processes, transactions may be categorized into differ-
ent classes and the STL for each class may be calculated in
advance.

6 CONCLUSIONS AND FUTURE RESEARCH

This paper describe a dynamic concurrency control method for
distributed database systems. Our approach is to f is t define a
unified model, PAM, and to show that 2PL, T/O, and PA fall
in this model. Then, based on PAM, 2PL, T/O and PA are
integrated to form a unified concurrency control system. Specif-
ically, we unify the precedence space for these three algorithms
and develop the semi-lock protocol, which serves to unify the
precedence enforcement function.

To complete the design of the dynamic system, we also study
the problem of algorithm selection. For this purpose, the STL
criterion is proposed. We find efficient ways to estimate the STL
for 2PL, T/O, and PA.

A number of problems remain to be investigated. Some of
them are: (1) a detailed simulation of the proposed method,
(2) integration of other concurrency control algorithms into our
unified system, (3) development of more accurate criteria than
STL, (4) allowing transactions to change their concurrency con-
trol methods, and (5) investigation of other applications of PAM.

References

Baruch Awerbuch. Dynamic deadlock resolution proto-
cols. In Proc. 27th Symp. Foundations Computer Science
(IEEE), pages 196-207, 1986.
R. Bayer, K. Elhardt, J. Heigert, and A. Reiser. Dynamic
timestamp allocation for transactions in database systems.
In Proc. 2nd Int. Symp. Distributed Databases, 1982.
P.A. Bemstein and N. Goodman. Concurrency control in
distributed database systems. ACM Computing Surveys,
13(2):185-221, June 1981.
P.A. Bemstein, N. Goodman, J. B. Rothnie, and C. A. Pa-
padimitriou. The correctness of concurrency mechanisms
of SDD-1: a system for distributed database (the fully re-
dundant case),. IEEE Trans. on Software Engineering, SE-
4(3):154-168, May 1978.
P.A. Bemstein, D. Shipman, and J. B. Rothnie. The cor-
rectness of concurrency mechanisms in a system for dis-
tributed databases. ACM Trans. on Database Systems,

K. M. Chandy, L. M. Haas, and J. Misra. Distributed dead-
lock detection. ACM Duns. on Computer Systems, 1(2),

5(1):52-68, March 1980.

1983.
[7] E. Horowits and S. Sahni. Fundamentab of Computer Al-

gorithms. Rockville, MD: Computer Science Press, 1978.
[8] T. A. Joseph and K. P. Birman. Low cost management of

replicated data in fault-tolerant distributed systems. ACM
Trans. on Computer Systems, 1(4):54-70, February 1986.

[9] P. J. Leu and Bharat Bhargava. Multidimensional time-
stamp protocols for concurrency control. In Proc. IEEE
Data Engineering Conf., pages 482-489, February 1986.

[lo] W. K. Lin and J. Nolte. Basic timestamp, multiple version
timestamp, and two-phase locking. In Proc. 9th VLDB,
pages 109-119, October 1983.

1111 R. Obermarck. Distributed deadlock detection algorithm.
ACM Tmns. on Database Systems, 2(7):187-208, June
1982.

The serializability of concurrent
database updates. Journal of ACM, 26(4):631-653, Octo-
ber 1979.

[13] C. H. Papadimitriou and P. A. Bernstein. Some computa-
tional problems related to database concurrency control. In
Proc. Conf. Theoretical Computer Science, August 1977.

[14] K.C. Sevcik. Comparison of concurrency control methods
using analytic models. In Proc. IFIP 9th World Computer
Congress, pages 847-858, September 1983.

[15] S. C. Shyu and V. 0. K. Li. Performance analysis of static
locking in distributed database systems. submitted for pub-
lication.

[12] C. H. Papadimitriou.

[16] M. Singhal and A.K. Agawala. Performance analysis of
an algorithm for concurrency control in replicated database
systems. In Proc. SIGMETRICS Conf., pages 159-169,
ACM, 1986.

[17] M. K. Sinha. Commutable transactions and the time-pad
synchronization mechanism for distributed systems. IEEE
Trans. on Soft. Eng., SE-12(3):462-476, March 1986.

[18] R. E. Stearns, P. M. I1 Lewis, and D. J. Rosenkrantz. Con-
currency controls for database systems. In Proc. 17th Symp.
Foundations Computer Science (IEEE), pages 19-32,1976.

[19] M. Stonebraker. Concurrency control and consistency of
multiple copies of data in distributed INGRES. IEEE
Trans. on Software Engineering, SE-5(3):188-192, May
1979.

[20] R. Sun and G. Thomas. Performance results on multiver-
sion timestamp concurrency control with predeclared write-
sets. In Proc. 6th Symp. Principles of Database Systems,
pages 177-184, ACM, March 1987.

[21] Y. C. Tay, R. Suri, and N. Goodman. A mean value perfor-
mance model for locking in database: the no-waiting case.

[22] R.H. Thomas. A majority consensus approach to concur-
rency control for multiple copy databases. ACM Tmns. on
Database Systems, 4(2):180-209, June 1979.

(231 C. P. Wang and Victor 0. K. Li. The precedence-agreement
concurrency control algorithm for distributed database sys-
tems. 1987. submitted for publication.

[24] C.P. Wang and Victor O.K. Li. The precedence-assignment
model for distributed database concurrency control algo-
rithms. In Proc. 6th Symp. Principles of Database Systems,
pages 119-128, ACM, March 1987.

(251 C.P. Wang and Victor O.K. Li. Queueing analysis of
the conservative timestamp-ordering concurrency control
algorithm. In Proc. International Computer Symposium,
pages 1450-1455, IEEE, December 1986.

JACM, 32(3):618-651, July 1985.

.

417

