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A UNIFIED CONCURRENCY CONTROL ALGORITHM 

FOR DISTRIBUTED DATABASE SYSTEMS * 

C. P. Wang and Victor 0. K. Li 

Department of Electrical Engineering 

University of Southern California 

Los Angeles, CA 90089-0272 

A B S T R A C T  

We present a unified concurrency control algorithm for dis- 
tributed database systems in which each transaction may choose 
its own concurrency control protocol. Specifically, we inte- 
grate Two-Phase Locking, Timestamp Ordering, and Precedence 
Agreement into one unified concurrency control scheme. We 
show the correctness of the new scheme and study the problem 
of selecting the best protocol for each transaction in order to 
optimize system performance. 

1 INTRODUCTION 

Many concurrency control algorithms have been proposed for 
distributed database systems[3]. Most of them fall into two cat- 
egories, namely, Two-Phase Locking (2PL)[8,19,22] and Time- 
stamp Ordering (T/0)[2,4,5,9,17]. 2PL, which was first designed 
for centralized systems and later applied to distributed ones, has 
the merit of simplicity but suffers from the distributed dead- 
lock problem [1,6,11]. On the other hand, T/O avoids deadlocks 
by enforcing a special execution order (timestamp order) among 
transactions, which may cause transaction restarts and degrada- 
tion of system performance. In [24], the Precedence Agreement 
(PA) algorithm is proposed. This concurrency control algorithm 
is free from deadlocks and restarts. However, communication 
cost increases as the system load increases. 

The best concurrency control algorithm for a particular ap- 
plication depends on the system parameters [10,14,16,20]. For 
example, in an environment where each transaction only accesses 
one data item through a write operation, 2PL outperforms T/O 
since no deadlocks may occur. On the other hand, when sys- 
tem load is heavy and transaction size (in terms of the number 
of data items accessed) is s m a l l  (but bigger than one), T/O is 
superior to 2PL. Many parameters may affect the performance 
of a concurrency control algorithm. Some of them are (1) trans- 
action arrival rate, (2) the number of read operations versus the 
number of write operations, (3) transmission delay, (4) the num- 
ber of data items requested by each transaction, ( 5 )  the cost of 
restarts, (6) deadlock detection time and cost, etc. 

To implement a distributed database system, the system de- 
signers may estimate the system parameters beforehand and pick 
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the best concurrency control algorithm for that system. From 
then on, every transaction in the database must follow that al- 
gorithm. We call this type of concurrency control static con- 
currency control. Most existing concurrency control methods 
are static. The major drawback is inflexibility. The originally 
chosen algorithm may not always be the best as the system pa- 
rameters change. In addition, the term ‘the best concunency 
control algorithm’ is really transaction dependent. Static con- 
currency control can only capture the average behavior but fails 
to reflect the individual differences among transactions. 

The alternative is dynamic concurrency control. In this case, 
depending on the system states and the transaction types, differ- 
ent concurrency control methods are used for different transac- 
tions in an attempt to improve performance. There are several 
design problems associated with dynamic concurrency control. 
These include: (1) What are the candidate concurrency con- 
trol algorithms? (2) How does one integrate these algorithms 
together and still preserve their correctness? (3) What are the 
system parameters relevant to choosing the best concurrency 
control algorithm and how does one determine them? (4) Given 
the relevant system parameters, how does one choose the best 
concurrency control method? 

This paper presents the design of a dynarmc concurrency 
control system which integrates 2PL, T/O, and PA. Our design 
consists of two steps: 

1. Algorithm Integration: The goal is to design an inte- 
grated system such that each transaction can choose one 
of the above three algorithms. Our approach includes 
defining a unified model for distributed concurrency con- 
trol algorithms, called the Precedence- Assignment Model 
(PAM)[24]. Based on this model, the problem of unifying 
2PL, T/O and PA is reduced to the distributed computa- 
tion of two functions. Then we solve the distributed com- 
putation problems and prove the correctness of our unified 
algorithm. 

2. Algorithm Selection: A cost function is defined to measure 
the loss of system throughput due to the requests issued by 
a transaction under its concurrency control method. The 
concurrency control algorithm will be chosen to minimize 
this cost function. We will discuss the evaluation of the 
cost function. 

This paper is organized as follows. We describe the dis- 
tributed database model and the precedence assignment model 
in sections 2 and 3, respectively. In section 4, the integration 
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of concurrency control algorithms is presented. The selection of 
the best concurrency control algorithm is discussed in section 5. 
In section 6, we conclude with a list of future research tasks. 

2 SYSTEM MODEL 

A database consists of a finite set of logical data items D = { 
D1, D?, ...}. A transaction is a sequence of logical read/write 
operations requested by the user. We assume that a legal trans- 
action consists of three phases, namely, the read phase, the local 
computing phase and the write phase. The read phase must 
be executed first and consists of operations which read from the 
database to the user’s local memory. The local computing phase, 
consisting of all local computations, is then executed. Finally, 
during the write phase, data is copied from the user’s memory 

back to the database. For database correctness, a transaction 
must either be completely executed or not executed at all. 

Each logical data item Di can be stored redundantly at dif- 
ferent computer sites in the network. The physical copies of Di 
are denoted Dij .  Operations which access physical data item 
D i j  are physical reads r(Dij), or physical writes w(Dij). To 
execute a transaction, the system first translates all the logi- 
cal operations into their corresponding physical operations. The 
physical operations are sent to the sites where the physical data 
items are located and implemented there. 

Let T = { t i ,  t2, ...} be a set of transactions. An execution 
of T is the implementation of all operations associated with all 
the transactions in T on the database. An execution E is serial 
if no two transactions are executed concurrently at any time. 
An execution is said to be serializable [12] if the effect of the 
execution is equivalent to some serial execution. 

Two logical (physical) operations conflict if they access the 
same logical (physical) data item and one of them is a write 
operation. We model the execution of transactions by a set 
of logs. There is one log associated with each physical data 
item. The log indicates the order in which physical operations 
are implemented on that data item. 

The properties of serializable execution have been extensively 
studied [3,12]. An important result is : 

Theorem 1: [12,13,18] Let T be a set of transactions, An 
execution E of T is serializable if there exists a total order on T 
such that if Oi and Oj are conflicting operations from distinct 
transactions ti and tj,  Oi is implemented before Oj in any log 
L l ,  L2, ... Lm if and only if ti < tj  in the total order. 

An execution is conflict serializable if it satisfies the condi- 
tion stated in Theorem 1. The total order defined in Theorem 1 
is called the serialization order. All existing concurrency control 
algorithms use conflict serializability as their correctness crite- 
rion. 

3 THE PRECEDENCE-ASSIGNMENT MODEL 

PAM was developed to model concurrency control algorithms in 
distributed databases. It is shown that 2PL, T/O and many 
other existing concurrency control algorithms may be modeled 
by PAM. In this section, we will describe PAM. 

3.1 THE CONCURRENCY CONTROL SUBSYS- 
TEM 

The concurrency control subsystem is modeled as follows: 

1. Request Issuer (RI): Located at each user site is a request 
issuer. RI takes user transactions as its input and sends 
requests to data sites. 

2. Data Queue (Queue): There is a data queue for each phys- 
ical data item. Each entry in the queue is a user request. 
The request a t  the head of the queue has the right to access 
the data. 

3. Data Queue Manager (QM): There is a data queue man- 
ager for each data queue. The data queue manager com- 
municates with the RI’s and enforces the order ofexecution 
of requests on the data queue. 

Each transaction ti is sent to one of the RI’s, say 5. Let 
01, 02, ... , on be the read or write operations of ti. For each 
Ok, 1 sends a read or write request to the corresponding data 
queue manager accessed by %. Ok cannot be implemented until 
its request is granted by that data queue manager. 

3.2 PRECEDENCE ASSIGNMENT AND 
ENFORCEMENT FUNCTIONS 

The concurrency control subsystem must serve two major func- 
tions: 

1. 

2. 

3.3 

Precedence Assignment: Assigns a precedence to each re- 
quest accessing the same data. That is, for each data Dj, 
there is a non-empty set SPj together with a total ordering 
<j on SPj. (SPj, <j) is called the precedence space for Dj. 
Let 0. J be the set of all operations accessing Dj. There 
is a one-to-one function ASj: Oj -+ SPj computed by the 
concurrency control subsystem which assigns a precedence 
(an element of SPj) to each operation accessing Dj. 

Precedence Enforcement: Controls the implementation of 
operations on each data item to satisfy the following two 
conditions: 

El: Suppose 01 and 02 are conflicting operations access- 
ing Dj. IfASj(o1) <j ASj(o2), then 01 is implemented 
before 02;  else 02 is implemented before 01. 

E2: There exists a serialization order on the set of transac- 
tions such that the precedence order of two conflicting 
operations follows the Corresponding transactions’ se- 
rialization order. 

MODELING 2PL AND T/O 

In this section, we illustrate how to use PAM to model 2PL and 
T f O .  

2PL 
Static 2PL is considered in this paper. For 2PL, the requests 

are handled in a first-come-first-served (FCFS) manner a t  each 
data queue. The precedences are assigned to operations accord- 
ing to their order of arrival. (El) is satisfied by the assignment 
function itself as long as the data queue is FCFS and conflict- 
ing operations are not allowed to be implemented concurrently. 
(E2) is satisfied by the following locking protocol: 

1. A request is granted a lock if all conflicting operations with 
lower precedences have been implemented (locks have been 
released). 
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2. The operations in a transaction can be implemented only Q W ) .  
if all the requests for that transaction are granted. (d) If grants are received from each QM(j), jump to (g). 

Some transactions may be blocked by the locking protocol 
forever, i.e., there is a deadlock. Ignoring deadlocks, the locking 
protocol together with (El)  implies (E2). 

To sum up, 2PL can be specified by 

1. Precedence Assignment: the arrival order at the data 
queue. 

2. Precedence Enforcement: (E l )  is implied by the assign- 
ment function; (E2) is satisfied by the locking protocol. 

T/O 
There are several versions of the T/O algorithm. Here we 

consider the Basic T/O algorithm [3] only. In Basic T/O,  all 
the data items have the same precedence space, which is the 
set of timestamps. Operations from the same transaction are 
assigned the same precedence (or timestamp). This assignment 
function satisfies (E2) automatically as the serialization order 
can be defined to be the timestamp order of the transactions. 
(E l )  is enforced by rejecting requests which arrive out of time- 
stamp order. 

In summary, T/O can be specified as: 

1. Precedence Assignment: 
stamp to each operation. 

Assign the transaction’s time- 

2. Precedence Enforcement: (E2) is automatically satisfied, 
(El)  is enforced by transaction restarts. 

3.4 THE PRECEDENCE AGREEMENT ALGO- 
RITHM BASED ON TIMESTAMPS 

PA decides the precedence for each operation through negoti- 
ation with the particlpating RI’s and QM’s, and is free from 
deadlocks and restarts. The following is a description of one 
version of PA based on timestamps. 

Each transaction ti is assigned a timestamp tuple (TSi, 
INTi), where TSi is the timestamp for ti and INTi is the back- 
off interval associated with ti. This algorithm works just like 
T/O except when a request arrives at the data queue and finds 
some conflicting operation with a later timestamp has already 
been granted. Instead of rejecting the newly arrived request, the 
data queue for data item j will badtoff the new request’s time- 
stamp, i.e., !ind the minimum TS’ij which is acceptable by the 
T/O protocol, with TS’ij = TSi + k. INTi, k E N (the natural 
numbers). Then TS’ij is sent back to the request issuer q. ’i 
will either receive grants from all the data queues accessed by ti 
(corresponding to the no rejection case in T/O) or receive some 
backoff timestamps, TS’im’s. In the former case, the transaction 
can be executed. In the iatter case, the transaction will backoff 
its timestamp to max- TS’ij. This new timestamp will be sent 
to all the data queues accessed by ti to update each request’s 
timestamp. Now t i  can wait for the grants and begin execution. 

J 

We state the algorithm formally: 

1. For each ti, 5 performs the following: 

(a) Generate Qi=(TSi, INTi). 
(b) Send requests together with Qi to each data site Dj 

(c) Wait until either a grant or TS’ij is received from each 
accessed by the current transaction. 

(e) Let TS’i be maxj TS’ij. Send TS’i to each QM(j). 

(f) Wait until lock grants arrive. 
(9) Perform local computing (the data read are attached 

to the corresponding lock grant). 
(h) Send lock release to each QM(j). 

2. The data queue manager QM(j) for Dj performs the fol- 

(a) Keep track of two variables, R-TS(j) and W-TS(j), 
which are the biggest timestamp of granted read re- 

(b) Receive request qi and timestamp tuple Qi from ri. 
(c) Depending on whether is a read or write request 

do: 
read: If TSi > W-TSj, let TSi be qi’s timestamp 

and mark qi ‘accepted’; insert qi in QUEUE(j). 
Otherwise, calculate TS’ij = TS; + k.INTi, k E 
N, such that TS’ij > W-TS(j); let TS’ij be qi’s 
timestamp and mark qi ‘blocked’; insert qi in 
QUEUE(j); send TS’ij to ri. 

write: If TSi > W-TSj and TSi > R-TSj, let TSi 
be qi’s timestamp and mark qi ‘accepted’; in- 
sert qi in QUEUE(j). Otherwise, calculate TS’ij 
= TSi + k.INTi, k E N, such that TS’ij > max 
{W-TS(j), R-TS(j)}; let TS’ij be qi’s timestamp 
and mark qi ‘blocked’; insert qi in QUEUE(j); 
send TS’ij to ri. 

(d) When TS’i is received from ri, update the timestamp 
of qi and mark qi ‘accepted’; re-insert qi into the 
proper position in QUEUE(j). 

lowing: 

(e) Queue(j) works as follows: 
i. All entries are sorted in increasing timestamp or- 

ii. Define HD(j) to be the request in QUEUE(j) such 
smaller 

der. 

that all requests in QUEUE(j) with 
timestamps have already been grant e d. 
A. If HD(j) is marked ‘blocked’, wait. 
B. If HD(j) is a read request marked ‘accepted’, 

and if all previously granted write requests 
have been released, then set R-TS(j) to the 
timestamp of HD(j). Send grant to the trans- 
action issuing HD(j). 

C. If HD(j) is a write request marked ‘accepted’, 
and if all previously granted requests have 
been released, then set W-TS(j) to 
the timestamp of HD(j). Send grant to the 
transaction issuing HD(j). 

D. Otherwise, wait. 

PA can be modeled by PAM as follows: 

1. Precedence Assignment: Through the PA protocol, a single 
precedence is assigned to each request of a transaction. 

2. Precedence Enforcement: The precedence assignment 
function guarantees both (El)  and (E2). 

The correctness of PA will be shown in the next section. 
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4 THE UNIFIED CONCURRENCY CONTROL 
SYSTEM 

We have already demonstrated the precedence assignment and 
enforcement functions for 2PL, T/O, and PA. To unify these 
algorithms, we have to unify their assignment functions and then 
their precedence enforcement functions. 

4.1 UNIFIED PRECEDENCE ASSIGNMENT 
FUNCTION 

The assignment function for 2PL resides at each data site, and 
assigns the next available precedence to an incoming request. 
The assignment function for T/O is a t  the request issuers, and 
assigns the timestamp of each transaction to all of its requests. 
The assignment function for PA is more complicated: The ini- 
tial timestamp is decided at  the request issuer; then each data 
site decides a feasible timestamp; finally, collecting all the fea- 
sible timestamps, the request issuer decides the timestamp for 
all requests of the current transaction. To unify these three al- 
gorithms, we first define the unified precedence space (UPS) at  
each data queue. UPS is the timestamp space and the prece- 
dence is assigned as follows: The precedence for T/O and PA 
requests are their respective timestamps. The precedence for a 
2PL request q accessing data item j is the biggest timestamp 
which has ever appeared in data queue j before q’s arrival. This 
ensures the new request is inserted at the tail of the queue and 
all 2PL requests follow the FCFS rule. The precedence order is 
defined as follows: 

1. 

2. 

3. 

4.2 

Compare the value of the timestamps f is t .  

If it is a tie, compare the site id’s of the transactions. 
A 2PL controlled transaction is regarded as having the 
biggest site id. 

If still tied, then either both requests are 2PL or both are 
not. If both are 2PL transactions, compare their arrival 
order at the data queue; otherwise, compare their transac- 
tion id’s. 

UNIFIED PRECEDENCE ENFORCEMENT 
FUNCTION 

In the unified system, many types of requests may appear in 
each data queue. The enforcement function must enforce both 
(El)  and (E2) under all possible situations. Some requests which 
may be granted by individual enforcement functions cannot be 
granted by the unified enforcement function. For example, in 
pure T/O, a granted read request never prevents write requests 
with bigger timestamps from accessing the data. But the follow- 
ing example shows that if T/O is used together with 2PL, then 
sometimes read requests must lock the data to preserve (E2). 

Example: Consider three data items x, y, z, and three trans- 
actions t i ,  t2, t3. t i  and t2 are controlled by T/O and t3 is 
controlled by 2PL. The operations for the transactions are: 

t l  : r l ( 4  Wl(Y). 

t3 : r3(z), w3(x). 
t2 : r2(Y), w2(z). 

The precedence order of these requests in the data queue 

Queue(x): r1 < w3. 
Queue(y): r2 < w1. 
Queue(z): r3  < w2. 

may be: 

Both r2 and w1 are T/O type requests. Therefore, w1 will 
be implemented before t2 is executed. But then all three trans- 
actions will be executed and the execution is not serializable. 

One solution to the unified enforcement function is to use 
locking for all requests, i.e., before a transaction leaves the sys- 
tem, lock releases must be sent to each data queue accessed by it 
and a request cannot be granted until all previously granted con- 
flicting requests have been released. This method, while sacrific- 
ing the degree of concurrency for T/O transactions, guarantees 

We now introduce a more sophisticated approach, called 
semi-locks. This type of locks preserve (E2) without reducing 
the degree of concurrency for T/O. Intuitively, a data is semi- 
locked if it is considered unlocked by the T/O protocol but must 
be treated as locked by 2PL and PA. The following semi-lock 
protocol decides, before a data item is unlocked, when the lock 
can become a semi-lock, i.e., ready for T/O type requests: 

W ) .  

1. There are four possible locks: read (RL), write (WL), semi- 
read (SRL), and semi-write (SWL). 

2. Two locks conflict if they lock the same data item and 
at least one is a WL or SWL. A lock is pre-scheduled if 
at least one conflicting lock is granted earlier but not yet 
released. All other locks are called normal locks. The 
following rules describe when HDU) may be granted and 
what kind of locks are granted: 

If HD(j) is a read request issued by a 2PL or PA 
transaction, then it can be granted a RL if all pre- 
viously granted WL’s and SWL’s on the data j have 
been released. 
If HD(j) is a write request issued by a 2PL or PA 
transaction, then it can be granted a WL if all previ- 
ously granted locks on data j have been released. 
IfHD(j) is a read request issued by a T/O transaction, 
then it can be granted a SRL if all previously granted 
WL’s on data j have been released. 
IF HD(j) is a write request issued by a T/O trans- 
action, then it can be granted a WL if all previously 
granted RL’s and WL’s on data j have been released. 
If HD(j) was once granted a pre-scheduled lock, which 
later became normal, then a normal lo& grant will be 
issued for HD(j). 

3. Before execution, 2PL and PA transactions must hold 
proper RL’s or WL’s. After execution, lock releases are 
sent to the locked data item. 

4. Before execution, a T/O transaction must hold a SRL on 
each data item read by it, and a WL on each data item 
written by it. After execution, it sends lock releases to 
the locked data if it did not get any pre-scheduled locks. 
Otherwise, it transforms all its locks into semi-locks (RL 
+ SRL, WL -+ SWL). At this point, the transaction is 
considered executed. But the request issuer will continue 
to collect lock grants for this transaction until there is one 
normal lock grant received from each data item accessed 
by this transaction. Then lock releases are sent to the data 
locked by that transaction. 

The semi-lock protocol preserves the enforcement functions 
for 2PL and PA in the following sense: If the system runs 2PL 
(PA) transactions only, then the unified enforcement function 
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works in the same way w the enforcement function for 2PL (PA). 
On the other hand, when the system runs T/O only, the unified 
enforcement function results in lock release messages which are 
not generated by the T/O enforcement function. But these mes- 
sages are irrelevant in the sense that no T/O transactions need 
these messages for synchronization. 

4.3 CORRECTNESS 

We will show the correctness of the unified concurrency control 
system. By doing so, the correctness of PA is also proved since it 
can be regarded as a special instance of the unified scheme where 
all transactions use PA as their concurrency control algorithm. 

First define when an operation is implemented: Operations 
of 2PL and PA type transactions are implemented when the cor- 
responding locks are released; a T/O operation is implemented 
when the operation changes a lock to a semi-lock on the data or, 
if the lock is released. 

Let <s be a binary relation on the set of executed transac- 
tions defined as follows: Let ti and t j  be two executed transac- 
tions, ti <s tj iff (1) ti = t .  or (2) there is a pair of conflicting 
operations oi and 0-  issued by ti and t. respectively, and oi is 
implemented before oj. An execution i", conflict serializable iff 
the conflict graph induced by <s is acyclic[l2,18], i.e., <s is a 
partial order. 

Theorem 2: Let T be a set of transactions executed under 
the unified concurrency control algorithm. <s must be a partial 
order on T. In other words, the execution is conflict serializable. 

Proofi Suppose <s is not a partial order on T. Then there 
is a cycle t l  <s t2 <s ... <s tn <s t l .  In addition, t l ,  ..., tn  
cannot all be T /O  type transactions since the semi-lock protocol 
implements T/O type operations according to their timestamp 
order. Without loss of generality, assume tn is a 2PL or PA type 
transaction. The semi-lock protocol requires tn to get all normal 
locks on all data items accessed by it. This implies tn-l has to 
receive all normal locks and to release all of these locks, either 
semi or normal, before tn can release any locks. By induction, 
t i  has to release all the locks before tn  releases any lock. But 
t n  is of 2PL or PA type and tn  's t l  implies tn releases some 
locks before t l .  This is a contrahction. 

J 

Q. E. D. 
Theorem 2 shows that if the unified system allows a set of 

transactions to be executed, the execution must be conflict seri- 
alizable. Now we want to consider the situation when the system 
is blocked. It will be shown that if the system is blocked, there 
must be at least one 2PL type transaction in the wait-for cycle, 
that is, T/O and PA never block the system by themselves. 

Definition 1: At time U, if there are requests not imple- 
mented yet, psman(u) is the smallest precedence of such re- 
quests; else pSmd(u)  is undefined. 

Let P be the set of all possible precedences, i.e., extended 
timestamp space, and let T be the set of all transactions. Let 
P T  be the set of precedences assigned to requests associated 
with the transactions in T. Our proof starts with a special case 
of PT and will be generalized. 

Lemma 1: If PT is isomorphic to the order of N,  then the 
system is blocked if and only if 3 U such that V x >U, p s d ( x )  
= C where C is a constant. 

Proof: (e) In any data queue, different requests have dif- 
ferent precedences. Therefore, the number of requests whose 
precedence is C is finite. At least one of these requests, say 

rq, cannot be implemented in finite time, else p s d ( )  will be 
changed to a value different from C. Therefore, the transaction 
issuing rq is blocked. 

(3) If no such C exists, there are two cases: (a) 3 U such 
that V x >U, psmd(x)  is undefined or (b) V U, 3 x > U  such that 
psmall(u) # P,mau(x). 

Case (a) implies the system becomes empty after finite time. 
Therefore, no transaction is blocked. Case (b) implies that 
psman() is changed for infinitely many times. Since the number 
of requests with the same precedence are finite, psmau() cannot 
be changed to the same value for infinitely many times. This 
implies the range of p smd( )  is infinite. Therefore, if at time U, 

a request rq with precedence p is not implemented yet, there is 
time x > U  and psmau(x) > p. This implies at time x, (1) rq 
has been implemented, or (2) rq is of T/O type and has been 
rejected, or (3) rq is of PA type and it has been assigned a new 
backoff precedence. It is clear that if case (1) or (2) occurs, 
the transaction issuing rq is either executed or restarted. If (3) 
OCCWS, rq's precedence is backed off to a bigger one. But even- 
tually p s d ( )  will be greater than this precedence because PA 
can backoff the precedence of rq at most once. Then rq will 
be implemented and the transaction issuing rq will be executed. 
Thus we conclude that all transactions will be either executed 
or restarted after finite time, i.e., no blocking occurs. 

Q. E. D. 
Theorem 3: Assume the precedence order on PT is iso- 

morphic to the order of N, then the system is blocked only if the 
blocked request with the smallest precedence is from a 2PL type 
transaction. 

Proof: From Lemma 1, the system is blocked if and only if 
3 U, such that V x > U, psmd(x)  = C. There are three cases: 

1. psmall() is owned by a request issued by a T/O type trans- 
action t: p s m d ( )  is the timestamp o f t .  If t is rejected, 
then p s m d ( )  will be updated to another value. If t is not 
rejected, all of its requests have precedence p s d ( )  which 
is the smallest precedences not yet implemented. In short, 
t can be executed and psm& is updated to another value. 
We reach contradictions in both cases, thus p s m d ( )  can- 
not be owned by T/O type requests. 

2. pSed()  is owned by a request issued by a PA type trans- 

(a) psmall() is the original timestamp oft: t can receive 
either lock grants or back-off precedences from all the 
data accessed by it. Then either t can be executed 
or t will back off its precedence to the biggest of the 
back-off precedences received. 

t can receive 
back-off precedences from all the data accessed by 
it. Similarly, t can be executed or t will back off its 
precedence to the biggest of the back-off precedences 
received. 

action t. There are two cases: 

(b) psmall() is the back-off precedence: 

In either case, psmall() will be changed. Thus p s m d ( )  
cannot be owned by a request issued by PA type transac- 
t ions. 

3. p s m a ~ ( )  is owned by a request issued by a 2PL type trans- 
action t.  

We conclude that case (3) must be true. 

Q .  E. D. 
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Corollary 1: PA is correct and free from deadlocks and 
rejections. 

Proof: Theorem 2 shows PA will output a conflict serial- 
izable execution. Theorem 3 shows every transaction will be 
executed eventually. In addition, from the definition of PA, no 
transactions will be restarted. 

Q. E. D. 
Corollary 2: Any deadlock cycle must contain at  least one 

2PL type transaction. 
Proof: This is also a consequence of Theorem 3. The ratio- 

nale is as follows. Our unified precedence assignment functions 
have the property that the removal of 2PL transactions will not 
affect the precedences assigned to T/O and PA type requests. 
Thus the removal of 2PL transactions will not destroy any dead- 
lock cycles which contain T/O and PA transactions only. But 
the removal of 2PL transactions does guarantee freedom from 
blocked transactions and hence deadlock freedom. Thus we con- 
clude there must be at least one 2PL transaction in each deadlock 
cycle. 

Q. E. D. 
The assumption that PT is isomorphic to N can be relaxed 

if, during any finite period of time, only finitely many transac- 
tions may arrive. Ignoring 2PL type transactions, the timestamp 
space is isomorphic to N since the values of timestamps are from 
N and only finitely many T/O or PA type transactions can have 
the same timestamp value. The key problem which prevents PT 
from being isomorphic to N is that there are potentially infinitely 
many 2PL requests assigned the same timestamp. But this prob- 
lem can be fixed. Conceptually, we can modify the precedence 
assignment function of 2PL to prevent infinitely many requests 
assigned the same timestamp and still preserve the precedence 
order of requests in the data queue. This modification will make 
P T  isomorphic to N without changing any implementation order 
of operations. 

The 2PL precedence assignment function ASj for data j is 
modified as follows: If there are infinitely many T/O or PA type 
requests entering Queue(j), AS. does not need to be changed J 
since the arrival of these requests will stop ASj from assign- 
ing the same precedence. If, on the other hand, there are only 
finitely many T/O or PA type requests entering Queue(j), ASj 
remains unchanged until the T /O  (or PA) request Omax with 
the largest timestamp TSmU arrives. Then ASj changes and 
assigns TSm=+m to the mth arriving 2PL requests after the 
arrival of omax. The new AS. will only assign a timestamp, if 
ever, finitely many times. 

J 

5 D Y N A M I C  C O N C U R R E N C Y  CONTROL 

In the previous section, the unified concurrency control system 
is presented. We now discuss how to select the most profitable 
concurrency control algorithm for each transaction. 

Before developing the selection method, we define our per- 
formance measure to be the average transaction system time S 
and study how the transaction arrival rate, A, and the number 
of data items accessed by each transaction st, affect S .  Our sim- 
ulation results [23] show that 2PL performs well when X is low. 
When X is high, although the number of transactions directly 
involved in deadlocks does not increase very much, S goes up 
dramatically since more transactions are blocked by deadlocked 
transactions. For T/O, S grows steadily as X increases. It out- 

performs 2PL when X is high. However, as is also shown in [lo], 
T/O becomes worse than 2PL and PA as st increases. Appar- 
ently, this is due to the significant increase of restart probability. 
PA is a compromise between 2PL and T/O. It performs like 2PL 
when Xis low and like T/O while X is high. When X is moderate, 
it outperforms both 2PL and T/O. 

5.1 THE SYSTEM T H R O U G H P U T  LOSS FUNC-  
T I O N  

One possible method for selecting concurrency control algo- 
rithms is as follows: Each request issuer keeps a table of average 
system time versus transaction types and concurrency control 
method chosen. For each newly arrived transaction, the request 
issuer picks the concurrency control algorithm which minimizes 
the average system time. However, we believe this method does 
not perform well for the following reasons: 

1. 

2. 

Minimizing the system time for individual transactions is 
not equivalent to optimizing S. 

This method is biased towards 2PL since once deadlocks 
occur, not only is the system time of deadlocked transac- 
tions prolonged, but also the system time of all blocked 
transactions. Thus 2PL transactions tend to shorten their 
own system time by degrading other transactions’ perfor- 
mance. 

The method we have adopted, instead of considering average 
system time, is to estimate the system throughput loss, STL. 
Our method picks the concurrency control algorithm for each 
transaction to minimize STL. Before discussing STL any fur- 
ther, let us introduce the following notations and definitions: 

1. 

2. 

3. 

4. 

5. 

6. 

The current transaction t has m(t) read requests, 
TI,~z,.-.,T,(~), and n(t)  write requests, QI,Q~,*.*,~~(~). 

Let D(rq)  denote the data item accessed by request rq. 

The write throughput of a data queue, which is the av- 
erage number of write locks granted per unit time, is de- 
noted Xw(j ) .  Similarly, the read throughput is denoted 
A v ( j ) .  Let A, (A,) denotes the throughput averaged over 
all Xw(j)’s (L(j)’s). 

A A ,  the system throughput, is the summation of all Xr(j)’s 
and X,(j)’s. 

The fraction of read requests among all requests is Q v .  

K is the average number of requests per transaction. 

We also make the following assumptions and approximations: 

1. In computing STL,  we assume a transaction gets all its 
locks at  the same time, and all its locks are released at  the 
same time. 

2. The output process at each data queue (the process of lock 
releases) is Poisson. 

Now we consider STL( t ) ,  the STL due to t, under our as- 
sumptions. Assume a request rq  locks a data for U time units, 
what is the throughput loss on that data? This depends on what 
kind of lock T Q  has. If it is a read lock, then during this period of 
time, no write locks can be granted. Potentially, the throughput 
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loss is X,D(rq) U. On the other hand, if it is a write lock, the 
loss is (X,D(rq) + XrD(rq))  U. But there are other losses due 
to rq: Suppose that after rq gets its lock, another request rq' 
gets a lock on data k, but the transaction issuing rq' also issues 
a request blocked by rq, or blocked by some request blocked by 
rq, then rq' is blocked until rq releases the locks. Therefore, 
STL(t)  is difficult to  calculate or measure in general. Thus we 
use the following approximation. 

Suppose transaction t starts to hold all (m(t)  + n(t))  locks 
at  time 0, the throughput loss, At, is given by 

m(t) 4) 
~t = L D ( r i )  + LD(qi )  + A r D ( q i )  

i=l i=l 

Now, the rate a t  which requests get locksis AA-&. A request 
to obtain a lock will be blocked if the transaction issuing this 
request also issues a blocked request. A random transaction, on 
the average, issues K requests. Each request is blocked with 
probability $. Assuming that the probability of blocking at 
different data site are independent, the rate at which requests 
obtaining locks is blocked is 

I f a  request gets a lock and blocks the data, the new through- 
put loss depends on whether it gets a read lock or a write lock. 
Again, we approximate it by taking the average, that is, the new 
throughput loss is At + Aw + (1 - Qr) + A,. 

Now we are ready to solve STL( t )  recursively by defining 
the following functions. Let STL'(A~,,,, U) represents the STL 
during period of U time units where the initial throughput loss 
is There are two cases: 

1. During this period, no other new lock grants block any 
data queue; then the STL is Aloss U. 

2. At time +, a new lock grant blocks a data queue; then the 
STL is Aloss - I + STL'(Aioss + A, + (1 - Q,) . A,, U - 2). 

Thus STL' can be defined recursively as follows: 
If boss 2 AA, 

STL'(&,,,, U) = AA ' U; 

else 

S T L ' ( X l o s s ,  U) = (1 - ezp( -Ablock  . U)) . Aloss 

f [ Ablock eZP(-Ablock * 2) 

' ( A o s s  . z + S T L ' ( X l o s s  + Anew, U - ~ ) ) d +  

U 

where Xblock = (AA - ~ l ~ ~ ~ )  (1 - (1 - *lK-l) 

Note that STL' can be evaluated efficiently through Dynamic 
and Anew = X ~ o s s  + Xw + (1 - Qr) * hr. 

Programming techniques [7]. 

5.2 SELECTION BASED O N  STL 

Now we describe the selection method based on STL. Our 
selection is based on the following parameters which can ei- 
ther be collected periodically or estimated through analytical 
methods[14,15,21,25]: 

1. For 2PL transactions: 

(a) U z p ~ :  average lock time if a request is not aborted. 

(b) UiPL: average lock time of an aborted request. 

(e) PA: probability of abortion of a transaction due to 
deadlocks. 

2. For T/O transactions: 

(a) UT/O: average lock time if a request is not aborted. 
(b) U$/o: average lock time if a request is aborted. 

(c) P,: the probability of rejection of a read request. 
(d) P,!: the probabdty of rejection of a write request. 

3. For PA transactions: 

(a) UPA: average lock time if a request is not backed off 

(b) UbA: average lock time if a request is backed off later. 

(c) PE: the probability a read request is backed off. 
(d) PA: the probability a write request is backed off. 

Let t be a transaction as described in the last section, we 
will estimate STL due to t for 2PL, T/O and PA, by the STL' 
function just defined. 

later. 

2PL 

solved by the following equation: 
The STL due to t under 2PL, denoted STL~PJ,(~) can be 

S T L Z ~ L ( ~ )  = (1 - P A ) .  STLzp~( t1  t is not aborted) 
+PA S T & p ~ ( t l  t is aborted), 

or 

STLZPL(t) = (1 - P A )  ' STL'(At, UZPL) 

+PA * ( S T & P L ( ~ )  + STL'(At, u;p~)) 
T/O 

Similarly, S T L T / O ( ~ )  can be solved by the follow equation: 

STLT/o(t) = (1 - Pr)m(t) * (1 - . STL'(&,UT/O) 
+(l- (1 - Pp)m(t) (1 - P,!)"'") - (STL'(X;,U$/,) 

+STLT/O ( t )  1 
Here A; is the average system throughput loss due to blocking 
by t ' s  requests given that at least one oft's requests is rejected. 
A; can be solved by the following equation: 

m(t) n(t) 

(1 - p r )  L D ( T i )  + (1 - p,!) L D ( q i )  + ArD(qi) = 

(1 - (1 - Pr)m(t)(l - p;)"'")X; + (1 - Pr)m(t'(l - P,!)n("X* 
i= l  i=l 

In the above equation, The left hand side is the s u m  of the 
expected throughput loss due to each request of t. The right 
hand side calculates the average throughput loss by conditioning 
on whether t is rejected or not. Thus A; is given by 
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STLpA(t) = (1 - pB)m(t)(l  - ph)n(t)STL'(&, U P A )  
+(1 - (1 - P B ) " ( ~ ) ( ~  - Ph)n(t))(STL'(X:, U b A )  
+STL'(&, UPA)) 

where A: is 

1 A t  = 1 - (1 - pB)m(t). (1 - pf,)n(t) * ((1 - PB) 

4') " ( t )  
. L D ( r i )  + (1 - PA) * CLP(qi) + A T D ( q i )  

,=1 i= l  

-At  * (1 - PB)m(t) . (1 - ph)n(t))  

In our selection method, for a new transaction t, STLpL( t ) ,  
STL,,,(t), and STLpA(t) are calculated separately. The dgo- 
rithm with the smallest STL value is chosen to be t's concur- 
rency control algorithm. To speed up the performance of the 
selection processes, transactions may be categorized into differ- 
ent classes and the STL for each class may be calculated in 
advance. 

6 CONCLUSIONS AND FUTURE RESEARCH 

This paper describe a dynamic concurrency control method for 
distributed database systems. Our approach is to f is t  define a 
unified model, PAM, and to show that 2PL, T/O, and PA fall 
in this model. Then, based on PAM, 2PL, T/O and PA are 
integrated to form a unified concurrency control system. Specif- 
ically, we unify the precedence space for these three algorithms 
and develop the semi-lock protocol, which serves to unify the 
precedence enforcement function. 

To complete the design of the dynamic system, we also study 
the problem of algorithm selection. For this purpose, the STL 
criterion is proposed. We find efficient ways to estimate the STL 
for 2PL, T/O, and PA. 

A number of problems remain to be investigated. Some of 
them are: (1) a detailed simulation of the proposed method, 
(2) integration of other concurrency control algorithms into our 
unified system, (3) development of more accurate criteria than 
STL, (4) allowing transactions to change their concurrency con- 
trol methods, and (5) investigation of other applications of PAM. 
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