10,110 research outputs found

    Consistency Index-Based Sensor Fault Detection System for Nuclear Power Plant Emergency Situations Using an LSTM Network

    Get PDF
    A nuclear power plant (NPP) consists of an enormous number of components with complex interconnections. Various techniques to detect sensor errors have been developed to monitor the state of the sensors during normal NPP operation, but not for emergency situations. In an emergency situation with a reactor trip, all the plant parameters undergo drastic changes following the sudden decrease in core reactivity. In this paper, a machine learning model adopting a consistency index is suggested for sensor error detection during NPP emergency situations. The proposed consistency index refers to the soundness of the sensors based on their measurement accuracy. The application of consistency index labeling makes it possible to detect sensor error immediately and specify the particular sensor where the error occurred. From a compact nuclear simulator, selected plant parameters were extracted during typical emergency situations, and artificial sensor errors were injected into the raw data. The trained system successfully generated output that gave both sensor error states and error-free states

    Principal component analysis and perturbation theory–based robust damage detection of multifunctional aircraft structure

    Get PDF
    A fundamental problem in structural damage detection is to define an efficient feature to calculate a damage index. Furthermore, due to perturbations from various sources, we also need to define a rigorous threshold whose overtaking indicates the presence of damages. In this article, we develop a robust damage detection methodology based on principal component analysis. We first present an original damage index based on projection of the separation matrix, and then, we drive a novel adaptive threshold that does not rely on statistical assumptions. This threshold is analytic, and it is based on matrix perturbation theory. The efficiency of the method is illustrated using simulations of a composite smart structure and experimental results performed on a conformal load-bearing antenna structure laboratory test

    Cross-layer system reliability assessment framework for hardware faults

    Get PDF
    System reliability estimation during early design phases facilitates informed decisions for the integration of effective protection mechanisms against different classes of hardware faults. When not all system abstraction layers (technology, circuit, microarchitecture, software) are factored in such an estimation model, the delivered reliability reports must be excessively pessimistic and thus lead to unacceptably expensive, over-designed systems. We propose a scalable, cross-layer methodology and supporting suite of tools for accurate but fast estimations of computing systems reliability. The backbone of the methodology is a component-based Bayesian model, which effectively calculates system reliability based on the masking probabilities of individual hardware and software components considering their complex interactions. Our detailed experimental evaluation for different technologies, microarchitectures, and benchmarks demonstrates that the proposed model delivers very accurate reliability estimations (FIT rates) compared to statistically significant but slow fault injection campaigns at the microarchitecture level.Peer ReviewedPostprint (author's final draft

    ACO-GCN: A FAULT DETECTION FUSION ALGORITHM FOR WIRELESS SENSOR NETWORK NODES

    Get PDF
    Wireless Sensor Network (WSN) has become a solution for real-time monitoring environments and is widely used in various fields. A substantial number of sensors in WSNs are prone to succumb to failures due to faulty attributes, complex working environments, and their hardware, resulting in transmission error data. To resolve the existing problem of fault detection in WSN, this paper presents a WSN node fault detection method based on ant colony optimization-graph convolutional network (ACO-GCN) models, which consists of an input layer, a space-time processing layer, and an output layer. First, the users apply the random search algorithm and the search strategy of the ant colony algorithm (ACO) to find the optimal path and locate the WSN node failures to grasp the overall situation. Then, the WSN fault node information obtained by the GCN model is learned. During the data training process, where the WSN fault node is used for error prediction, the weights and thresholds of the network are further adjusted to increase the accuracy of fault diagnosis. To evaluate the performance of the ACO-GCN model, the results show that the ACO-GCN model significantly improves the fault detection rate and reduces the false alarm rate compared with the benchmark algorithms. Moreover, the proposed ACO-GCN fusion algorithm can identify fault sensors more effectively, improve the service quality of WSN and enhance the stability of the system

    A Review of Graph Neural Networks and Their Applications in Power Systems

    Get PDF
    Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many publications generalizing deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks) are summarized, and key applications in power systems, such as fault scenario application, time series prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed

    Current challenges for preseismic electromagnetic emissions: shedding light from micro-scale plastic flow, granular packings, phase transitions and self-affinity notion of fracture process

    Get PDF
    Are there credible electromagnetic (EM) EQ precursors? This a question debated in the scientific community and there may be legitimate reasons for the critical views. The negative view concerning the existence of EM precursors is enhanced by features that accompany their observation which are considered as paradox ones, namely, these signals: (i) are not observed at the time of EQs occurrence and during the aftershock period, (ii) are not accompanied by large precursory strain changes, (iii) are not accompanied by simultaneous geodetic or seismological precursors and (v) their traceability is considered problematic. In this work, the detected candidate EM precursors are studied through a shift in thinking towards the basic science findings relative to granular packings, micron-scale plastic flow, interface depinning, fracture size effects, concepts drawn from phase transitions, self-affine notion of fracture and faulting process, universal features of fracture surfaces, recent high quality laboratory studies, theoretical models and numerical simulations. Strict criteria are established for the definition of an emerged EM anomaly as a preseismic one, while, precursory EM features, which have been considered as paradoxes, are explained. A three-stage model for EQ generation by means of preseismic fracture-induced EM emissions is proposed. The claim that the observed EM precursors may permit a real-time and step-by-step monitoring of the EQ generation is tested

    Dynamic Fault Characteristics Evaluation in Power Grid

    Full text link
    To enhance the intelligence degree in operation and maintenance, a novel method for fault detection in power grids is proposed. The proposed GNN-based approach first identifies fault nodes through a specialized feature extraction method coupled with a knowledge graph. By incorporating temporal data, the method leverages the status of nodes from preceding and subsequent time periods to help current fault detection. To validate the effectiveness of the node features, a correlation analysis of the output features from each node was conducted. The results from experiments show that this method can accurately locate fault nodes in simulation scenarios with a remarkable accuracy. Additionally, the graph neural network based feature modeling allows for a qualitative examination of how faults spread across nodes, which provides valuable insights for analyzing fault nodes

    A Survey on Deep Learning Role in Distribution Automation System : A New Collaborative Learning-to-Learning (L2L) Concept

    Get PDF
    This paper focuses on a powerful and comprehensive overview of Deep Learning (DL) techniques on Distribution Automation System (DAS) applications to provide a complete viewpoint of modern power systems. DAS is a crucial approach to increasing the reliability, quality, and management of distribution networks. Due to the importance of development and sustainable security of DAS, the use of DL data-driven technology has grown significantly. DL techniques have blossomed rapidly, and have been widely applied in several fields of distribution systems. DL techniques are suitable for dynamic, decision-making, and uncertain environments such as DAS. This survey has provided a comprehensive review of the existing research into DL techniques on DAS applications, including fault detection and classification, load and energy forecasting, demand response, energy market forecasting, cyber security, network reconfiguration, and voltage control. Comparative results based on evaluation criteria are also addressed in this manuscript. According to the discussion and results of studies, the use and development of hybrid methods of DL with other methods to enhance and optimize the configuration of the techniques are highlighted. In all matters, hybrid structures accomplish better than single methods as hybrid approaches hold the benefit of several methods to construct a precise performance. Due to this, a new smart technique called Learning-to-learning (L2L) based DL is proposed that can enhance and improve the efficiency, reliability, and security of DAS. The proposed model follows several stages that link different DL algorithms to solve modern power system problems. To show the effectiveness and merit of the L2L based on the proposed framework, it has been tested on a modified reconfigurable IEEE 32 test system. This method has been implemented on several DAS applications that the results prove the decline of mean square errors by approximately 12% compared to conventional LSTM and GRU methods in terms of prediction fields.©2022 Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed
    • 

    corecore