2,771 research outputs found

    Window Query Processing with Proxy Cache

    Get PDF
    A location dependent query (LDQ) result set is valid only in a specific region called the validity region (VR). While limiting the validity of a particular result set to a given area, the VR may also be used in caching implementations to determine if cached results satisfy semantically equivalent queries. Existing LDQ caching schemes rely on the database servers to provide the VR at a cost of high computational overhead. Alternatively, a LDQ proxy cache, which approximates the VR can be employed, freeing the database servers from the high cost of calculating the VR. A LDQ proxy cache architecture is proposed to compute an estimated validity region (EVR) based on the observed querying history at the proxy server. We present an algorithm - Window_EVR - for the LDQ proxy to compute the EVR for a window query result set. The simulation results show that LDQ proxy caching using the Window_EVR algorithm significantly reduces both the window query response time and the workload at the database servers while maintaining query result set accuracy

    Smart PIN: utility-based replication and delivery of multimedia content to mobile users in wireless networks

    Get PDF
    Next generation wireless networks rely on heterogeneous connectivity technologies to support various rich media services such as personal information storage, file sharing and multimedia streaming. Due to users’ mobility and dynamic characteristics of wireless networks, data availability in collaborating devices is a critical issue. In this context Smart PIN was proposed as a personal information network which focuses on performance of delivery and cost efficiency. Smart PIN uses a novel data replication scheme based on individual and overall system utility to best balance the requirements for static data and multimedia content delivery with variable device availability due to user mobility. Simulations show improved results in comparison with other general purpose data replication schemes in terms of data availability

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    On Data Management in Pervasive Computing Environments

    Get PDF
    Abstract—This paper presents a framework to address new data management challenges introduced by data-intensive, pervasive computing environments. These challenges include a spatio-temporal variation of data and data source availability, lack of a global catalog and schema, and no guarantee of reconnection among peers due to the serendipitous nature of the environment. An important aspect of our solution is to treat devices as semiautonomous peers guided in their interactions by profiles and context. The profiles are grounded in a semantically rich language and represent information about users, devices, and data described in terms of “beliefs,” “desires, ” and “intentions. ” We present a prototype implementation of this framework over combined Bluetooth and Ad Hoc 802.11 networks and present experimental and simulation results that validate our approach and measure system performance. Index Terms—Mobile data management, pervasive computing environments, data and knowledge representation, profile-driven caching algorithm, profile driven data management, data-centric routing algorithm. æ

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    Pervasive Data Access in Wireless and Mobile Computing Environments

    Get PDF
    The rapid advance of wireless and portable computing technology has brought a lot of research interests and momentum to the area of mobile computing. One of the research focus is on pervasive data access. with wireless connections, users can access information at any place at any time. However, various constraints such as limited client capability, limited bandwidth, weak connectivity, and client mobility impose many challenging technical issues. In the past years, tremendous research efforts have been put forth to address the issues related to pervasive data access. A number of interesting research results were reported in the literature. This survey paper reviews important works in two important dimensions of pervasive data access: data broadcast and client caching. In addition, data access techniques aiming at various application requirements (such as time, location, semantics and reliability) are covered
    corecore