
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 2006

Window Query Processing with Proxy Cache Window Query Processing with Proxy Cache

Gao Xing

John Sustersic

A. R. Hurson
Missouri University of Science and Technology, hurson@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
G. Xing et al., "Window Query Processing with Proxy Cache," Proceedings of the 7th International
Conference on Mobile Data Management (MDM'06) (2006, Nara, Japan), Institute of Electrical and
Electronics Engineers (IEEE), Jan 2006.
The definitive version is available at https://doi.org/10.1109/MDM.2006.166

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229136503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MDM.2006.166
mailto:scholarsmine@mst.edu

Window Query Processing with Proxy Cache *

Xing Gao, John Sustersic, and Ali R. Hurson
Department of Computer Science and Engineering

The Pennsylvania State University
University Park, PA 16802, USA

{xgao, sustersi, hurson}@cse.psu.edu

Abstract

A location dependent query (LDQ) result set is
valid only in a specific region called the validity
region (VR). While limiting the validity of a particular
result set to a given area, the VR may also be used in
caching implementations to determine if cached
results satisfy semantically equivalent queries.
Existing LDQ caching schemes rely on the database
servers to provide the VR at a cost of high
computational overhead. Alternatively, a LDQ proxy
cache, which approximates the VR can be employed,
freeing the database servers from the high cost of
calculating the VR. A LDQ proxy cache architecture is
proposed to compute an estimated validity region
(EVR) based on the observed querying history at the
proxy server. We present an algorithm - Window_EVR
- for the LDQ proxy to compute the EVR for a window
query result set. The simulation results show that LDQ
proxy caching using the Window_EVR algorithm
significantly reduces both the window query response
time and the workload at the database servers while
maintaining query result set accuracy.

1. Introduction

In a mobile computing system, a mobile client may
issue queries with some location restrictions. Such a
query is called a location aware query (LAQ) [13]. A
subclass of the LAQ is the location dependent query
(LDQ), whose result set depends upon the client’s
current location [1]. For instance, “Find the phone
numbers of the McDonald’s in New York city” is an
LAQ, while “Find the phone numbers of all

* The Office of Naval Research and National Science
Foundation under the contracts N00014-02-1-0282 and
IIS-0324835 in part have supported this work.

McDonald’s within 10 miles from my current location”
is a LDQ. Two most common types of LDQ are the
nearest neighbor (NN) queries and range queries. A
NN query retrieves the data object satisfying the query
that is the closest to the querying location, while a
range query retrieves all the data objects within a
specific range [8]. A window query is the most
important type of range query where the range is an
axis-parallel rectangle.

Definition 1: Window query - A window query,
Win_Q(x, y, x_length, y_length), retrieves all objects
satisfying the query located in a rectangle region
whose center lies on the geographical point (x, y).
Edges of the rectangle are x_length and y_length,
parallel to x-axis and y-axis, respectively.

A LDQ result set is dependent on user’s current
location and is valid only in a specific region (the VR).
If the user reissues the same query at a new location,
the query must be resubmitted to the database (DB)
server. This may lead to unnecessary network traffic
and DB server workload if the result set remains valid,
i.e. the new issuing location is still within the VR.

VR-aware LDQ caching is one solution to address
this problem. Provided with a VR for a cached result
set, a VR-aware LDQ cache may determine if the
querying location of a LDQ is within the VR of a
cached result; this permits some LDQs to be satisfied
from the cache. The DB server has full knowledge of
the geographical locations of all data, and it can
determine the precise VR. Without this information,
the mobile clients and proxy servers cannot determine
the VR precisely. Consequently, most of the existing
LDQ caching solutions rely on the DB server to
provide VRs for LDQ result sets. Since computing the
VR requires extra storage and processing overhead,
DB servers frequently do not provide this service or
provide it only when workload permits.

[7] proposed an algorithm to estimate the VR when
the DB server does not provide it. In this algorithm, the

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

LDQ proxy server caches the most frequently issued
LDQs, their result sets, and the corresponding VRs.
When the DB server does not provide the VR for a
LDQ result set, the LDQ proxy computes an estimated
validity region (EVR) based on the observed querying
history. The proposed Right-hand algorithm in [7] can
determine EVRs for all LDQs with convex VRs,
including NN queries.

Computing EVRs for window queries involves
more complexity than for NN queries. First, a NN
query has only one result, while a window query may
have zero, one, or multiple results. Second, the VR for
a NN query result is always convex [15], while the VR
for a window query result set could be concave.
Analyzing the VRs for window query result sets
reveals several important common characteristics.
Based on these characteristics, we propose the
Window_EVR algorithm to determine EVRs for
window query result sets.

The rest of this paper is organized as follows.
Section 2 reviews the existing work related to LDQ
caching and window query processing. We briefly
describe the LDQ proxy in section 3. Section 4
presents the basis for and the description of the
Window_EVR algorithm. Our simulations of the
proposed Window_EVR algorithm are discussed and
simulation results are analyzed in section 5. Finally,
section 6 concludes this paper and presents future
research directions.

2. Related work

The idea of queries with location constraints was
originally introduced in [9], and has been discussed in
many other works [1, 4, 5, 6, 13]. Naturally, mobile
users are likely to query information related to his or
her current position. This class of queries was termed
the location dependent query (LDQ) in [1]. [13]
distinguished LDQs from other queries with location
constraints: a query whose result depends on certain
location attributes is a location aware query (LAQ),
while a LDQ is a query whose result depends on user’s
current location.

Inspired by the semantic caching [3, 10], [12]
proposed a modified semantic caching scheme for
location dependent results. Taking validity information
into the consideration, [16] presented algorithms for
cache invalidation and cache replacement strategies.

There are several algorithms for the DB server to
determine the VR for a NN query result. [15] built the
static Voronoi Diagram (VD) to index all data objects
for NN queries. The Voronoi cell (VC) of the result
object is the corresponding VR. The VD, however, is

expensive to maintain due to database updates, and it is
also inapplicable for the k nearest neighbor (k-NN)
query when k is unknown. Even when k is known, an
order-k VD is very expensive in terms of
computational and storage overhead [17].
Alternatively, [17] proposed algorithms to calculate
the VR for NN queries during the run time. It avoids
the large storage overhead but introduces extra
computing and I/O cost.

Unlike a NN query result set that always has at
most one result, a window query result set may contain
multiple result objects. One of the most recent
algorithms to calculate the VR for window query result
sets was proposed in [17]. In this algorithm, the VR is
determined at the run time. After retrieving all the
result objects, the DB server needs to execute extra
window queries in order to determine the VR for the
result set.

3. LDQ proxy with Window_EVR
algorithm

3.1. LDQ proxy structure

We propose to implement a LDQ proxy at the
mobile base station (BS). The LDQ proxy consists of
three components: a semantic LDQ cache, a LDQ
cache manager, and a LDQ filter (see figure 1). Three
essential fields in a semantic LDQ cache entry are
LDQ_id, LDQ_result, and LDQ_vr. LDQ_id uniquely
identifies a LDQ. LDQ_result is the cached LDQ result
set. The LDQ_vr is the corresponding VR for the LDQ
result. The LDQ cache manager is responsible for
cache maintenance and cache protocols. The LDQ
filter determines whether or not a LDQ can be
answered by a cached result set.

Definition 2: Semantic LDQ equivalence - Two
location dependent queries (LDQ) are semantically
equivalent if and only if they produce same results at
any given location when processing the same
databases.

The DB servers in our mobile system model
provide a menu of query templates with certain options
and variables. The mobile client generates LDQs with
query templates and specific variable values. For
example, NN(“hotel”) searches the nearest hotel, and
Window(“hotel”, 5, 10) returns all hotels within a
rectangle 5*10 mile2 axis-parallel window centered at
the current position. Consequently, two LDQs are
semantically equivalent if and only if they are
generated by the same query template and same
variable values.

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

Figure 1. LDQ proxy cache configuration

Theorem 1: Two semantically equivalent LDQs
have the same VR for all result sets.

Proof by contradiction: Assume the VRs for two
semantically equivalent LDQs are different. There is at
least one location where they produce different result
sets. According to definition 1, they should produce
the same result set at any given location. We have
reached a contradiction. The assumption must be false
and two semantically equivalent LDQs share the same
VR for all result sets.

Based on definition 2 and theorem 1, we now can
determine when a LDQ can be answered by a cached
result set, i.e., if there is a semantic LDQ cache hit.

Definition 3: Semantic LDQ cache hit - A LDQ
can be answered by a LDQ result set in the semantic
LDQ cache if the following conditions are met:

1. The incoming LDQ and the cached LDQ are
semantically equivalent.

2. The incoming LDQ is issued within the validity
region of the cached result set.

3. The cache entry is valid.

3.2. Window query processing at LDQ proxy

The following procedure shows how the LDQ
proxy cache processes a widow query.

Step 1: Look up in the LDQ cache
Upon receiving a window query, the LDQ proxy

looks up the satisfying result set in the cache. If there is
an entry for a semantically equivalent query and the
querying position is in the corresponding VR, there is a
semantic LDQ cache hit, then go to step 5. Otherwise,
continue to step 2.

Step 2: Forward the window query to the DB
server

If there is no semantic LDQ cache hit, LDQ proxy
will forward the window query to the DB server and

request a VR. After receiving query result, if a VR is
provided along with the result set, continue to step 3.
Otherwise, go to step 4.

Step 3: Update proxy cache with VR
If there is no cache entry for the LDQ associated

with this result set, a new entry with window query
description, result set, and the VR will be inserted into
the proxy cache. If there is an existing entry for the
cached result set, it must be true that the cache entry
has only an EVR, instead of a VR, for the result set.
(Otherwise, there should be a semantic LDQ cache hit
and the query should have been resolved.) The LDQ
proxy will update the entry by replacing the EVR with
the VR, then go to step 5.

Step 4: Update the proxy cache without VR
If there is no cache entry for the LDQ associated

with this result set, the Window_EVR algorithm (to be
described in section 4) will generate an EVR based on
the semantically equivalent queries in the querying
history. A new entry with window query description,
result set, and the EVR will be inserted into the proxy
cache. If there is a cache entry with the query result set
associated with an EVR, LDQ proxy re-computes the
EVR using the Window_EVR algorithm. The cache
entry is updated with the newly generated EVR.

Step 5: Return the result set to the mobile client
Return the window query result to the mobile client.

If the mobile client has requested validity information,
LDQ proxy will return the associated VR or EVR to
the mobile clients.

4. Window_EVR algorithm

4.1. VRs of window query result sets

In order to define the VR, we need to introduce the
term ‘Minkowski region (MR)’. The MR of an object
is a rectangle identical to the query window whose
geometric center lies on the corresponding object. If
the querying position is within the MR of an object a,
object a will be a result object. Otherwise, object a
will not be in the window query result set.

The VR of a window query result set is the area that
is within the MRs of all result objects, and outside the
MRs of all non-result objects. The intersection of the
MRs of all result objects is called inner validity region
(IVR). It is the maximum area where the result objects
remain in the result set. To prevent non-result objects
from the result set, the MRs for all non-result objects
must be removed from the IVR, yielding the VR [17],
which is a convex or concave polygon.

4.2. Characteristics of window query VRs

Interface to databases

Base
Station

Interface to MCs

LDQ proxy

LDQ
filter

LDQ cache
manager

Semantic
LDQ cache

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

We find several important characteristics of the
VRs for window query result sets. As the edges of the
querying window are parallel to x-axis or y-axis, the
edges of the IVR and the MRs for all result objects are
also parallel with x-axis or y-axis. Consequently, the
IVR is a rectangle, i.e., a convex polygon with 4 right
angles (90º). Removal of the MR of a non-result object
from IVR may introduce a 270º angle into the VR.
Therefore, a VR may be convex or concave. Since an
IVR is bounded by the length and width of a MR, it is
impossible to have two adjacent 270º angles. From
above analyses, we find the following characteristics of
the VR for a window query result set.

1. The VR is a convex or concave polygon.
2. The edges of the VR are parallel to x-or y-axis.
3. All interior angles of the polygon are either 90º

or 270º.
4. There are no adjacent 270º angles.

4.3. Window_EVR algorithm

The LDQ proxy does not have direct access to the
databases maintained at the DB servers. It has only a
partial knowledge about the database via its querying
history recording the recent querying activities. The
content of a query event includes 1) the LDQ
description, 2) the querying location, and 3) the query
result set. If several querying events return the same
result set for a window query, all these querying
positions are within the VR of this LDQ result set.

The LDQ proxy uses the Window_EVR algorithm
to generate the EVR for a window query result set
based on the querying history. The goal is to estimate
the largest region that is guaranteed to be within the
corresponding VR. The Window_EVR algorithm
generates EVR in 3 steps:

Step 1: Estimate the IVR
The algorithm determines the estimated inner

validity region (EIVR) based on the query history from
the set of semantically equivalent LDQs sharing the
same result set. This EIVR is taken as the minimal
bounding rectangle (MBR) that covers all querying
locations from which semantically equivalent LDQs
generate the same result set.

Step 2: Pessimistically estimate MRs of non-
result objects

Each pair of querying locations indicates two
bounds on the proximity of non-result objects.
Pessimistically assuming that the querying locations
are precisely on the boundary of the VR, these two
bounds imply one of two worst-case MRs of a data
object that is not part of the result set. By themselves,

it is impossible to disprove the existence of either non-
result MR. However, the existence of other querying
locations known to reside in the VR permit many of
these possible MRs to be eliminated.

Step 3: Obtain the EVR
The EVR is obtained by pessimistically estimating

MRs from potential non-result objects and eliminating
them with known valid LDQ querying locations. LDQs
issued from within the EVR provide no new
information regarding the VR; however, LDQs issued
outside the EVR but from within the VR do. These
LDQs expand the EVR by eliminating estimated MRs
from non-result objects as before, replacing them with
less-pessimistic ones while still guaranteeing that the
EVR is completely contained within the VR. This
methodology results in a monotonically increasing
EVR that approached the VR asymptotically.

A running example of 4 querying events
demonstrates the Window_EVR algorithm. The outer
polygon represents the precise VR that is unavailable
to the LDQ proxy. The EIVR is the bounding rectangle
of the known querying locations. The fading regions
represent the worst-case MRs of the non-result data
objects.

The EIVR after the first querying event contains
only one point <x1, y1>. The lack of further knowledge
requires the pessimistic approximation of non-result
MRs - {(x<>x1)&(y<>y1)} (see figure 2). As a result,
the EVR is only one point.

After the second querying event, the EIVR is the
rectangle {<x2, y2>, <x1, y1>}, and non-result MRs are
described by {(x<x1)&(y>y2) or (x>x2)&(y<y1) shown
as two fading shadow regions (see figure 3). The EVR
contains only two points.

The EIVR after the third query is the rectangle
{<x2, y3>, <x3, y1>}, and non-result MRs described by
{(x<x1)&(y>y2) or (x<x3)&(y<y2) or (x>x1)&(y>y3)}
(see figure 4). So far, the EVR consists of only the
querying locations of the observed LDQs.

Figure 2. EVR after first query

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

After the forth query, however, the EIVR becomes
{<x2, y3>, <x4, y1>}, and pessimistically estimated
non-result MRs are described by {(x<x1)&(y>y2) or
(x<x3)&(y<y2) or (x>x3)&(y<y4) or (x>x1)&(y>y4)}.
The current EVR is a rectangle {<x1, y2>, <x3, y4>},
illustrated as the white area in figure 5.

Figure 3. EVR after second query

Figure 4. EVR after third query

Figure 5. EVR after fourth query

4.4. EVR containment guarantee

Theorem 2: The Window_EVR algorithm generates
an EVR that is completely contained with the VR.

Proof: By definition the EVR is a sub region of the
IVR. By pessimistically assuming that all observed
querying locations occur at the very boundary of the
VR and considering all possible non-result MRs that
are not eliminated by the existence of querying
locations known to be valid, the algorithm guarantees
that at no time the EVR exceeds the boundary of the
VR. Therefore the EVR is guaranteed to be a sub
region in the VR.

5. Evaluation and analysis

The Window_EVR algorithm is evaluated using a
simulator constructed in [2]. The experiments simulate
two systems with similar environment setup. The only
difference is that the proxy server in one system,
named EVR system, employs Window_EVR algorithm
and implements LDQ cache. The other system, named
NO_EVR system, implements the LDQ cache and
relies solely on the DB server to provide VRs for query
result sets. The simulation results show that when the
DB server does not always provide the VR for window
query, the LDQ proxy and the Window_EVR
algorithm greatly reduce both the number of LDQs
sent to the DB server and the average window query
response time.

5.1. Simulation model

The experiments employed the dataset of a region
centered on State College, Pennsylvania, and including
the Pennsylvania State University. The region is
bounded by a 12,000m*12,000m square (a longitude
span of 0.1425 degree and latitude span of 0.1078
degree). Based on demographic information, we
modeled the simulated area into 4 regions: centre,
west, south, and northeast. The city has a population of
50,000, and the population density in each region
follows a normal distribution. The regional centers (μx,
μy), standard deviations σ, and total population
distributions (α) during working and non-working
hours are shown in table 1.

Table 1. Region model and parameters

Region Center
(μx, μy)

σ Population
9am~5pm

Population
5pm-9am

Centre 6000,6000 σ0=100 α0=0.4 α0=0.25
West 2000,7000 σ1=60 α1=0.2 α1=0.25
South 6000,3000 σ2=60 α2=0.2 α2=0.25

Northeast 10000,8000 σ3=100 α3=0.2 α3=0.25
The population is also categorized into 4 groups:

G0 (those are less than 18 years old), G1 (college
students), G2 (middle age workers), and G3 (senior

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

residents). Each group has different moving pattern,
and table 2 lists the population distributions β (based
on the real demographical data of the simulated
region), moving probabilities PMove, and speed patterns
for each population category.

Table 2. Group characteristic
 G0 G1 G2 G3

Population β0=0.1 β1=0.5 β2=0.25 β3=0.15
PMove μ0a =9,

μ0b=16,
σ0=1.5

μ1a =10,
μ1b =17,

σ1=3

μ2a =9,
μ2b=17,

σ2=2

μ3 =11,
σ3=3

VWalking

(mph)
μ0=2.5,
σ0=0.5

μ1=2.5,
σ1=0.3

μ2=2.0,
σ2=0.3

μ3=1.0,
σ3=0.3

VLocal

(mph)
μ0=25,
σ0=5

μ1=25,
σ1=5

μ2=25,
σ2=5

μ3=25,
σ3=5

VHighway

(mph)
μ0=40,
σ0=5

μ1=40,
σ1=5

μ2=40,
σ2=5

μ3=40,
σ3=5

Trips/day λ0= 1.5 λ1= 3 λ2= 2 λ3= 0.7
Hops/trip Λ0= 0.8 λ1= 0.8 λ2= 0.8 λ3= 0.8

The walking speed for each group follows normal
distribution with corresponding (μ, σ). All four groups
share the same driving patterns on local roads or
highways. The number of trips per day and number of
hops per trips follow the Poisson distribution with
corresponding λ. While the probability to start a
movement for group G3 follows a normal distribution,
G0, G1, and G2 are modeled with a composite normal
distribution to best capture the mobility pattern of
mobile users (see equation 1 and 2).
Equation 1:

Pmove_g0,1,2=0.495*
πσ

σ

μ

2

2

2

2

)(at

e
−−

 + 0.495*
πσ

σ

μ

2

2

2

2

)(bt

e
−−

 +0.01

Equation 2:

Pmove_g3=0.99*
πσ

σ

μ

23

2

)(
2

3

2
3−− t

e
 + 0.01

The simulator simulated one DB server and one

proxy server serving the simulated region. A newly
developed geographical information systems, e.g.,
[11], can process up to 200 queries per second, so we
model the mean database service rate as 0.01 seconds
and exponentially distributed. According to [17],
computing the VR doubles the number of database I/O
accesses required for processing a query, therefore we
modeled the database service rate VR by an
exponential distribution with a mean of 0.02 seconds.

The database contains about 700 data objects in 20
categories for local businesses and community
locations within the simulated region. The querying

probability for object categories and data within a
category is modeled as a Zipf [14] distribution.

The querying window for each query may be one of
three different sizes: small (600m*600m), medium
(1000m*1000m), and large (2000m*2000m). Similar
to most web search engines, there is a limit in the
number of result objects returned in response to a
query. This simulation returns up to 10 result objects.
Both proxy cache and client caches employ the least
recently used (LRU) cache replacement policy. The
lookup latency at client cache and proxy cache are
both 0.0001 seconds. It is hard to precisely model the
overhead of Window_EVR in generating and update
EVR. Considering potentially sheer database size at
the DB server and the limited querying history (500
querying events) at the proxy, we model the
Window_EVR algorithm overhead, in searching and
computation, to be 10% of the query processing delay
at the DB server, i.e., 0.001 seconds.

Wireless transmission delay between mobile clients
and the BS is determined by the bandwidth and
package size. The latency between the mobile client
and the BS depends on the message size and the
available bandwidth. The latency between the BS and
the DB server depends on the fixed network bandwidth
and traffic patterns. Table 3 gives the value of these
and other parameters from which our simulation is
modeled.

Table 3. Other simulation parameters
Parameters Value

Simulation length (days) 50
Number of data objects about this city 680
Proxy cache size (query result sets) 100
Client cache size (query result sets) 10
Proxy querying history size 500
Network bandwidth, BS to DB link (Mbps) 1000
Background network (BS to DB) utilization 0.4
Uplink bandwidth (Kbps) 19.2
Downlink bandwidth (Kbps) 144
Window query request size (byte) 32
Average window query results size (byte) 320
Average VR descriptor size (byte) 60
Max number of objects in a result set 10
Average query rate, daytime (hours) ½
Average query rate, night (hours) 1/5

In order to verify the efficiency of the proposed
Window_EVR algorithm, the simulation considers
window queries only. The performance improvement is
measured by two metrics: speed up of LDQ response
time and the DB server workload reduction. The speed
up of LDQ response time, Sresponse, is the difference
between the measured response times of the NO_EVR
system and the EVR system divided by the response

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

time of NO_EVR system (see equation 3). The DB
server workload reduction, Rworkload, is the difference
between the number of LDQs sent to DB servers in
NO_EVR and the EVR system divided by the number
of LDQs sent to DB servers in NO_EVR system (see
equation 4).
Equation 3:

Sresponse = RTNO_EVR −RTEVR

RTNO_EVR

where RT is the average window query response time.

Equation 4:

 Rworkload =
NO_EVR

EVRNO_EVR

NQDB

NQDB - NQDB

where NQDB is the number of window queries sent to
the DB server.

5.2. Performance evaluation and analysis

We simulated and compare both systems for
different scenarios in which the DB server provides the
VR for a LDQ with probabilities {0, 0.2, 0.4, 0.6, 0.8,
and 1.0}. Figures 6~8 show the performance
improvements realized when the proxy LDQ cache
employs the Window_EVR algorithm duing a 50-day
simulation. The Window_EVR algorithm results in
significant speed up in the LDQ response time while
reducing the workload at the DB server, particularly
when the DB server never provides VRs.

Figure 6 displays the speed up in window query
response time achieved through Window_EVR
algorithm. Figure 7 shows the percentage of mobile
queries that are processed by the DB server. Derived
from these percentages, the curve in figure 8 illustrates
the workload reduction at the DB server. In the case
that the DB server always provides the VR, the
performance of both scenarios are virtually identical.
When the VRs are only occasionally available from the
DB server, the Window_EVR algorithm in EVR

0%

4%

8%

12%

0 20 40 60 80 100

VR availability (%)

Sp
ee

d
up

 in
 r

es
po

ns
e

ti
m

e

Figure 6. Speed up in LDQ response time

80

85

90

95

100

0 20 40 60 80 100

VR availability (%)

Q
ue

ri
es

 s
en

t t
o

D
B

 (
%

)

EVR

No EVR

Figure 7. Number of queries sent to the DB server

0%

5%

10%

15%

0 20 40 60 80 100

VR availability (%)
W

or
kl

oa
d

re
du

ct
io

n
at

 D
B

Figure 8. Workload reduction at the DB server
system reduces the average LDQ response time and the
number of queries sent to the DB server. In the
scenario when the DB server never provides the VR
for a LDQ result, Window_EVR algorithm achieves an
11% speedup in LDQ response time while reducing the
DB server workload by 12%.

6. Conclusion and future work

We proposed an algorithm to estimate the VR for
window queries. The EVR was proven to be a sub-
region of the corresponding VR. This algorithm was
evaluated using a detailed simulation scenario modeled
after a real, modern community and including
components that consider actual population
demographics, modes of transportation, time-of-day
affects and trip-based mobility. The simulation results
show that the Window_EVR algorithm permits
effective caching of LDQ results without relying on the
DB server to provide the VR.

We plan to extend this work to study the
cooperative LDQ caching between mobile clients.
Furthermore, some mobile users prefer fast response
time at a cost of acceptable inaccuracy of the LDQ
results or the VRs. We will study Quality of Service
(QoS) issues in LDQ cache management and to further
improve the system performance.

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

7. Reference

[1] D. Barbara, "Mobile Computing and Databases - A
Survey", EEE Transactions on Knowledge and Data
Engineering, 11(1), 1999.

[2] http://www.mesquite.com/

[3] S. Dar, M. Franklin, B. Jonsson, D. Srivatava, and M.
Tan, "Semantic Data Caching and Replacement",
International Conference on Very Large Data Bases
(VLDB), 1996.

[4] M. Dunham and A. Helal, "Mobile Computing and
Databases: Anything New?" SIGMOD Record, Vol. 24, No.
4, 1995.

[5] M. Dunham and V. Kumar, "Location Dependent Data
and its Management in Mobile Databases", Proceedings of
the Ninth International Workshop on Database and Expert
Systems Applications, 1998.

[6] G. Forman and J. Zahorjan, "The Challenges of Mobile
Computing", IEEE Computer, Volume: 27(4), 1994.

[7] X. Gao and A. R. Hurson, "Location Dependent Query
Proxy", ACM Symposium on Applied Computing, 2005.

[8] R. Guting, "An Introduction to Spatial Database
Systems", Special Issue on Spatial Database Systems of the
VLDB Journal, 3(4), 1994.

[9] T. Imielinski and B. Badrinath, "Querying in Highly
Mobile Distributed Environments", International
Conference on Very Large Data Bases (VLDB), 1992.

[10] A. Keller and J. Basu, "A Predicate-based Caching
Scheme for Client-server Database Architectures", Very
Large Data Bases Journal, 5(1), 1996.

[11] MetaCarta, products information,
http://www.metacarta.com/products/technology.asp

[12] Q. Ren and M. Dunham, "Using Semantic Caching to
Manage Location Dependent Data in Mobile Computing",
International Conference on Mobile Computing and
Networking (MobiCom), 2000.

[13] A. Seydim, M. Dunham, and V. Kumar, "Location
Dependent Query Processing", International Workshop on
Data Engineering for Wireless and Mobile Access, 2001.

[14] G. K. Zipf, "Relative Frequency as a Determinant of
Dhonetic Change", Harvard Studies in Classical Philology,
15, 1929.

[15] B. Zheng and D. Lee, "Semantic Caching in Location-
dependent Query Processing", Seventh International
Symposium on Spatial and Temporal Databases, 2001.

[16] B. Zheng, J. Xu, and D. Lee, "Cache Invalidation and
Replacement Strategies for Location-Dependent Data in
Mobile Environments", IEEE Trans. on Computers, Special
Issue on Database Management and Mobile Computing,
51(10), 2002.

[17] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. Lee,
"Location-based Spatial Queries", International Conference
on Management of Data (SIGMOD), 2003.

Proceedings of the 7th International Conference on Mobile Data Management (MDM'06)
0-7695-2526-1/06 $20.00 © 2006 IEEE

	Window Query Processing with Proxy Cache
	Recommended Citation

	Microsoft Word - Window_Query_Processing_with_Proxy_Cache.doc

