24,944 research outputs found

    Taming Uncertainty in the Assurance Process of Self-Adaptive Systems: a Goal-Oriented Approach

    Full text link
    Goals are first-class entities in a self-adaptive system (SAS) as they guide the self-adaptation. A SAS often operates in dynamic and partially unknown environments, which cause uncertainty that the SAS has to address to achieve its goals. Moreover, besides the environment, other classes of uncertainty have been identified. However, these various classes and their sources are not systematically addressed by current approaches throughout the life cycle of the SAS. In general, uncertainty typically makes the assurance provision of SAS goals exclusively at design time not viable. This calls for an assurance process that spans the whole life cycle of the SAS. In this work, we propose a goal-oriented assurance process that supports taming different sources (within different classes) of uncertainty from defining the goals at design time to performing self-adaptation at runtime. Based on a goal model augmented with uncertainty annotations, we automatically generate parametric symbolic formulae with parameterized uncertainties at design time using symbolic model checking. These formulae and the goal model guide the synthesis of adaptation policies by engineers. At runtime, the generated formulae are evaluated to resolve the uncertainty and to steer the self-adaptation using the policies. In this paper, we focus on reliability and cost properties, for which we evaluate our approach on the Body Sensor Network (BSN) implemented in OpenDaVINCI. The results of the validation are promising and show that our approach is able to systematically tame multiple classes of uncertainty, and that it is effective and efficient in providing assurances for the goals of self-adaptive systems

    Understanding Uncertainty in Self-adaptive Systems

    Get PDF

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Robustness - a challenge also for the 21st century: A review of robustness phenomena in technical, biological and social systems as well as robust approaches in engineering, computer science, operations research and decision aiding

    Get PDF
    Notions on robustness exist in many facets. They come from different disciplines and reflect different worldviews. Consequently, they contradict each other very often, which makes the term less applicable in a general context. Robustness approaches are often limited to specific problems for which they have been developed. This means, notions and definitions might reveal to be wrong if put into another domain of validity, i.e. context. A definition might be correct in a specific context but need not hold in another. Therefore, in order to be able to speak of robustness we need to specify the domain of validity, i.e. system, property and uncertainty of interest. As proofed by Ho et al. in an optimization context with finite and discrete domains, without prior knowledge about the problem there exists no solution what so ever which is more robust than any other. Similar to the results of the No Free Lunch Theorems of Optimization (NLFTs) we have to exploit the problem structure in order to make a solution more robust. This optimization problem is directly linked to a robustness/fragility tradeoff which has been observed in many contexts, e.g. 'robust, yet fragile' property of HOT (Highly Optimized Tolerance) systems. Another issue is that robustness is tightly bounded to other phenomena like complexity for which themselves exist no clear definition or theoretical framework. Consequently, this review rather tries to find common aspects within many different approaches and phenomena than to build a general theorem for robustness, which anyhow might not exist because complex phenomena often need to be described from a pluralistic view to address as many aspects of a phenomenon as possible. First, many different robustness problems have been reviewed from many different disciplines. Second, different common aspects will be discussed, in particular the relationship of functional and structural properties. This paper argues that robustness phenomena are also a challenge for the 21st century. It is a useful quality of a model or system in terms of the 'maintenance of some desired system characteristics despite fluctuations in the behaviour of its component parts or its environment' (s. [Carlson and Doyle, 2002], p. 2). We define robustness phenomena as solution with balanced tradeoffs and robust design principles and robustness measures as means to balance tradeoffs. --
    • …
    corecore