106 research outputs found

    MildInt: Deep Learning-Based Multimodal Longitudinal Data Integration Framework

    Get PDF
    As large amounts of heterogeneous biomedical data become available, numerous methods for integrating such datasets have been developed to extract complementary knowledge from multiple domains of sources. Recently, a deep learning approach has shown promising results in a variety of research areas. However, applying the deep learning approach requires expertise for constructing a deep architecture that can take multimodal longitudinal data. Thus, in this paper, a deep learning-based python package for data integration is developed. The python package deep learning-based multimodal longitudinal data integration framework (MildInt) provides the preconstructed deep learning architecture for a classification task. MildInt contains two learning phases: learning feature representation from each modality of data and training a classifier for the final decision. Adopting deep architecture in the first phase leads to learning more task-relevant feature representation than a linear model. In the second phase, linear regression classifier is used for detecting and investigating biomarkers from multimodal data. Thus, by combining the linear model and the deep learning model, higher accuracy and better interpretability can be achieved. We validated the performance of our package using simulation data and real data. For the real data, as a pilot study, we used clinical and multimodal neuroimaging datasets in Alzheimer's disease to predict the disease progression. MildInt is capable of integrating multiple forms of numerical data including time series and non-time series data for extracting complementary features from the multimodal dataset

    Artificial intelligence in cardiology : applications, benefits and challenges

    Get PDF
    Evidently, the potential benefits of AI in cardiology are enormous. However, such benefits are not without challenges. First, there are clear benefits for improving work productivity. There are currently fewer physicians to care for an ever - increasing aging population (WHO 2016). AI can support, rather than replace physicians, generating time - and cost - saving benefits for them and their patients and enabling more compassionate and thorough interactions. However, as more tasks become automated, there are possibilities that fewer physicians will be required to work or that fewer will do so on a full - time basis, since many tasks could be delivered through platforms by part-time, freelancer physicians. This may impact the relationship between patients, physicians and administrative staff in healthcare systems

    Heart Rate Variability: A possible machine learning biomarker for mechanical circulatory device complications and heart recovery

    Get PDF
    Cardiovascular disease continues to be the number one cause of death in the United States, with heart failure patients expected to increase to \u3e8 million by 2030. Mechanical circulatory support (MCS) devices are now better able to manage acute and chronic heart failure refractory to medical therapy, both as bridge to transplant or as bridge to destination. Despite significant advances in MCS device design and surgical implantation technique, it remains difficult to predict response to device therapy. Heart rate variability (HRV), measuring the variation in time interval between adjacent heartbeats, is an objective device diagnostic regularly recorded by various MCS devices that has been shown to have significant prognostic value for both sudden cardiac death as well as all-cause mortality in congestive heart failure (CHF) patients. Limited studies have examined HRV indices as promising risk factors and predictors of complication and recovery from left ventricular assist device therapy in end-stage CHF patients. If paired with new advances in machine learning utilization in medicine, HRV represents a potential dynamic biomarker for monitoring and predicting patient status as more patients enter the mechanotrope era of MCS devices for destination therapy
    • …
    corecore