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The introduction of such digital technologies as robotic implants, home monitoring 

devices, wearable sensors and mobile apps in healthcare have produced significant amounts of 

data, which need to be interpreted and operationalized by physicians and health care systems 

across disparate fields (Free et al 2013). Most often, such technologies are implemented at the 

patient level, with patients becoming their own producers and consumers of personal data, 

something which leads to them demanding more personalized care (Kirchhof et al 2014).  

This digital transformation has led to a move away from a “top-down” data management 

strategy, “which entailed either manual entry of data with its inherent limitations of accuracy 

and completeness, followed by data analysis with relatively basic statistical tools… and often 

without definitive answers to the clinical questions posited” (Chang 2016, p. 91). We are now 

in an era of a “bottom-up” data management strategy that involves real-time data extraction 

from various sources (including apps, wearables, hospital systems etc), transformation of that 

data into a uniform format, and loading of the data into an analytical system for final analysis 

(Chang 2016).  

All this data, however, poses a serious challenge for physicians: the challenge of limitless 

choice. According to a white paper by Stanford Medicine (2017, p.4), “the sheer volume of 

health care data is growing at an astronomical rate: 153 exabytes (one exabyte = one billion 

gigabytes) were produced in 2013 and an estimated 2,314 exabytes will be produced in 2020, 

translating to an overall rate of increase at least 48 percent annually.” With so much data on 

the daily decisions of millions of patients about their physical activity, dietary intake, 

medication adherence, and self-monitoring (e.g., blood pressure, weight), to name but a few, 

physicians are at a loss as to which data to focus on, to search for what, and for which desired 

outcome?  
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Increased data storage, high computing power and exponential learning capabilities 

together enable computers to learn much faster than humans and address the challenge of 

limitless choice. Artificial intelligence (AI) is the development of intelligent systems, capable 

of taking “the best possible action in a given situation” (Future Advocacy 2018, p.8). To 

develop such intelligent systems machine learning algorithms are required to enable dynamic 

learning capabilities in relation to changing conditions. Machine learning takes many different 

forms and is associated with many different schools of thought including philosophy, 

psychology, and logic (with learning algorithms based on inverse deduction), neuroscience and 

physics (with learning algorithms based on backpropagation), genetics and evolutionary 

biology (with learning algorithms based on genetic programming), statistics (with learning 

algorithms based on Bayesian inference) and  mathematical optimization (with learning 

algorithms based on support vector machine) (Domingos 2015). Each of these schools of 

thought can apply their learning algorithms for different problems. However, none of these 

algorithms are perfect in solving all possible problems and none have reached a level of 

“superintelligence” (Bostrom 2016) that will be able to predict, diagnose and give 

recommendations for treating complex medical conditions. Still, when competently combined 

– and provided they are fed the appropriate data to learn from – these algorithms can generate 

what has been called a “master algorithm”, which could potentially solve much more complex 

problems that humans can (Domingos 2015). 

Machine learning can positively impact cardiovascular disease prediction and diagnosis 

by developing algorithms that can model representations of data, much faster and more 

efficiently than physicians can. For example, currently, a physician who wishes to predict the 

readmission of a patient with congestive heart failure needs to screen a large but unstructured 

electronic health record (EHR) dataset, which includes variables such as the International 

Classification of Diseases (ICD) billing codes, medication prescriptions, laboratory values, 
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physiological measurements, imaging studies, and encounter notes. Such a dataset makes it 

extremely difficult to decide a priori which variables should be included in a predictive model 

and what type of methods should be applied in the model itself (Johnson et al 2018).  

Such predictive models can be produced with “supervised learning” algorithms that 

require a dataset with predictor variables and labeled outcomes (Johnson et al 2018). For 

example, a recent study investigated the predictive value of a machine-learning algorithm that 

“incorporates speckle-tracking echocardiographic data for automated discrimination of 

hypertrophic cardiomyopathy (HCM) from physiological hypertrophy seen in athletes” (Narula 

et al 2016, p. 2287). The study’s results showed a positive impact of machine-learning 

algorithms in assisting in “the discrimination of physiological versus pathological patterns of 

hypertrophic remodelling... for automated interpretation of echocardiographic images, which 

may help novice readers with limited experience” (Narula et al 2016, p. 2287). 

A separate set of algorithms used in cardiology are called “unsupervised learning” 

algorithms which focus on discovering hidden structures in a dataset by exploring relationships 

between different variables (Johnson et al 2018). For example, one study investigated the use 

of such learning algorithms to identify temporal relations among events in EHR; these temporal 

relations were then examined to assess whether they improved model performance in 

predicting initial diagnosis of heart failure (Choi et al 2016). Thus, results from unsupervised 

learning algorithms can feed into supervised learning algorithms for predictive modelling. 

A third set of algorithms are reinforcement learning algorithms, which “learn behavior 

through trial and error given only input data and an outcome to optimize” (Johnson et al 2018, 

p. 2677). Designing dynamic treatment regimes such as, managing the rates of reintubation and 

regulating physiological stability in intensive care units is one area where the application of 

reinforcement learning algorithms may hold great potential (Weng et al 2017). 
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Evidently, the potential benefits of AI in cardiology are enormous. However, such 

benefits are not without challenges. First, there are clear benefits for improving work 

productivity. There are currently fewer physicians to care for an ever-increasing aging 

population (WHO 2016). AI can support, rather than replace physicians, generating time- and 

cost-saving benefits for them and their patients and enabling more compassionate and thorough 

interactions. However, as more tasks become automated, there are possibilities that fewer 

physicians will be required to work or that fewer will do so on a full-time basis, since many 

tasks could be delivered through platforms by part-time, freelancer physicians. This may 

impact the relationship between patients, physicians and administrative staff in healthcare 

systems (see Taylor et al 2016). 

Second, as discussed earlier, machine learning algorithms can scan through larger 

volumes of health data enabling faster identification of predictive, diagnostic, as well as 

treatment options for different cardiovascular diseases. This feeds into the current demand for 

more personalized care. At the same time, however, many patients now express the need for 

more transparency about the types of data shared, who it is used by and for what purpose. With 

the General Data Protection Regulation (GDPR) now in full force across Europe, there are 

important implications for the security and privacy of data that machine learning algorithms 

need to keep evolving. The recent scandal involving Google DeepMind and the Royal Free 

London NHS Foundation Trust, which led to the transfer of identifiable patient records across 

the entire Trust without explicit consent (Powles and Hodson 2017), is a case to be avoided. 

The architecture of the digital infrastructure supporting AI and machine learning across 

different localities and between applications and platforms needs to be carefully designed (see 

Constantinides et al 2018), in order to maintain the security and privacy of healthcare data. 

Beyond the issue of seeking consent before any access and use of data, there also are 

issues around the transparency of algorithmic objectives and outcomes (how do algorithms 
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work and to what end) and of the accountability for the potential misuse of data. As a recent 

report has pointed out, informed consent by all possible patients may not always be possible 

because of the way data are shared across platforms and for different purposes; algorithmic 

transparency, even though sought for, may be difficult to achieve because of the dynamic 

learning and evolution of algorithms; and accountability for data use may raise challenging 

ethical questions if in the end such data use leads to improved patient outcomes (Future 

Advocacy 2018). What matters the most is the clinical efficacy of algorithms and their use of 

data (Future Advocacy 2018).  

Finally, although both AI and physicians can make errors in their clinical judgment, 

either because of not having seen a particular case before or because of bad training, in 

combining the two—AI and human expertise—the number of clinical errors can be reduced. 

In this context, there are opportunities for revisiting the training of individual physicians, as 

well as multi-disciplinary teams to learn to interact with AI. We believe this is of paramount 

importance and new policies should be developed towards an improved and enhanced training 

of physicians, which will also enable more effective and efficient clinical judgment.  

In conclusion, it is important that we avoid placing “exaggerated hope” on the potential 

impact of AI, but also not to fall victims of “exaggerated fear” because we cannot identify with 

the technology (Bryson et al 2011). “The real dangers of AI are no different from those of 

other artifacts in our culture: from factories to advertising, weapons to political systems. The 

danger of these systems is the potential for misuse, either through carelessness or malevolence, 

by the people who control them” (Bryson et al 2011, p. 1641). The possibilities of improving 

clinical efficacy and healthcare outcomes through AI are enormous, but we need to be aware 

of the associated risks and challenges and try to minimize those through multidisciplinary 

research, and renewed legal and ethical policies. 
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