6,833 research outputs found

    Morphing a Stereogram into Hologram

    Full text link
    This paper develops a simple and fast method to reconstruct reality from stereoscopic images. We bring together ideas from robust optical flow techniques, morphing deformations and lightfield 3D rendering in order to create unsupervised multiview images of a scene. The reconstruction algorithm provides a good visualization of the virtual 3D imagery behind stereograms upon display on a headset-free Looking Glass 3D monitor. We discuss the possibility of applying the method for live 3D streaming optimized via an associated lookup table.Comment: PDF, 8 pages, 4 Fig

    Techniques for augmenting the visualisation of dynamic raster surfaces

    Get PDF
    Despite their aesthetic appeal and condensed nature, dynamic raster surface representations such as a temporal series of a landform and an attribute series of a socio-economic attribute of an area, are often criticised for the lack of an effective information delivery and interactivity.In this work, we readdress some of the earlier raised reasons for these limitations -information-laden quality of surface datasets, lack of spatial and temporal continuity in the original data, and a limited scope for a real-time interactivity. We demonstrate with examples that the use of four techniques namely the re-expression of the surfaces as a framework of morphometric features, spatial generalisation, morphing, graphic lag and brushing can augment the visualisation of dynamic raster surfaces in temporal and attribute series

    An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.896637Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The 2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods

    Binary morphological shape-based interpolation applied to 3-D tooth reconstruction

    Get PDF
    In this paper we propose an interpolation algorithm using a mathematical morphology morphing approach. The aim of this algorithm is to reconstruct the nn-dimensional object from a group of (n-1)-dimensional sets representing sections of that object. The morphing transformation modifies pairs of consecutive sets such that they approach in shape and size. The interpolated set is achieved when the two consecutive sets are made idempotent by the morphing transformation. We prove the convergence of the morphological morphing. The entire object is modeled by successively interpolating a certain number of intermediary sets between each two consecutive given sets. We apply the interpolation algorithm for 3-D tooth reconstruction

    Visualizing 2D Flows with Animated Arrow Plots

    Full text link
    Flow fields are often represented by a set of static arrows to illustrate scientific vulgarization, documentary film, meteorology, etc. This simple schematic representation lets an observer intuitively interpret the main properties of a flow: its orientation and velocity magnitude. We propose to generate dynamic versions of such representations for 2D unsteady flow fields. Our algorithm smoothly animates arrows along the flow while controlling their density in the domain over time. Several strategies have been combined to lower the unavoidable popping artifacts arising when arrows appear and disappear and to achieve visually pleasing animations. Disturbing arrow rotations in low velocity regions are also handled by continuously morphing arrow glyphs to semi-transparent discs. To substantiate our method, we provide results for synthetic and real velocity field datasets

    On the influence of geometry updating on modal correlation of brake components.

    Get PDF
    In most industries dealing with vibration, test/analysis correlation of modal properties is considered a key aspect of the design process. The success of test/analysis methods however often show mixed results. The aim of this paper is to assess and answer some classical correlation problems in structural dynamics. First an investigation of correlation problems from tests is proposed. Tools based on the modal assurance criterion are presented to provide a deeper analysis of correlation and results improvement. In a second part, the need of FEM topology correlation and update is demonstrated, using an efficient morphing technique. Tolerances in the manufacturing process that are well accepted in design and production stages are shown to lead to significant degradation of the test/analysis correlation. An application to an industrial brake part is eventually presented, in an approach of correlation procedure automatization for recurrent use
    corecore