9 research outputs found

    Development of a Virtual Environment-Based Electrooculogram Control System for Safe Electric Wheelchair Mobility for Individuals with Severe Physical Disabilities

    Get PDF
    Conventional wheelchairs are predominantly manual or joystick-operated electric wheelchairs. However, operating these wheelchairs can be difficult or impossible for individuals with severe physical disabilities. Due to losing control of their physical limbs, they depend on an attendant for assistance. As a remedy, bio-signals may be used as a control mechanism since they are readily available and can be acquired from any body part. This research proposes to use EOG signals to vail a control mechanism and test it in a virtual and actual electric wheelchair. The main contribution of the study is an investigation of the use of EOG to control an electric wheelchair in a virtual environment to determine safe control parameters for wheelchair use in complex environments. A customized data acquisition circuit was developed to acquire single-channel EOG signals using wet electrodes. The acquired signal was filtered and processed using feature extraction and classification techniques in MATLAB software. Two customized control environments were developed in Unity 3D, one with equally partitioned sections and the other with sections decreasing in size as the robot wheelchair approaches the target. Twenty-two test subjects (mean age 24.5, std 1.5) participated in the study, controlling the robot wheelchair in real-time with non or least instances of collision and oversteering. The system achieved an accuracy of 96.5% with a response time of 0.7s, translating to an ITR of 70.6 bits/min. Overall, the participants managed to navigate the virtual environment with a completion time of 101.94s ± 19.71 and 109.07s ± 13.25 for the male and female participants, respectively. In the scene with decreasing section sizes, 72% and 54% instances of collision and oversteering were reported, respectively, highlighting the need to consider the complexity of the control environment and the sufficiency of the participants' control skills to ensure safety in operations. The results confirm the usefulness of EOG as a control interface, with little or no need for recalibration. It provides a promising avenue for individuals with severe physical disabilities to operate wheelchairs independently in complex environments, enhancing their quality of life

    Using machine learning to blend human and robot controls for assisted wheelchair navigation

    No full text

    Robot Learning from Human Demonstrations for Human-Robot Synergy

    Get PDF
    Human-robot synergy enables new developments in industrial and assistive robotics research. In recent years, collaborative robots can work together with humans to perform a task, while sharing the same workplace. However, the teachability of robots is a crucial factor, in order to establish the role of robots as human teammates. Robots require certain abilities, such as easily learning diversified tasks and adapting to unpredicted events. The most feasible method, which currently utilizes human teammate to teach robots how to perform a task, is the Robot Learning from Demonstrations (RLfD). The goal of this method is to allow non-expert users to a programa a robot by simply guiding the robot through a task. The focus of this thesis is on the development of a novel framework for Robot Learning from Demonstrations that enhances the robotsa abilities to learn and perform the sequences of actions for object manipulation tasks (high-level learning) and, simultaneously, learn and adapt the necessary trajectories for object manipulation (low-level learning). A method that automatically segments demonstrated tasks into sequences of actions is developed in this thesis. Subsequently, the generated sequences of actions are employed by a Reinforcement Learning (RL) from human demonstration approach to enable high-level robot learning. The low-level robot learning consists of a novel method that selects similar demonstrations (in case of multiple demonstrations of a task) and the Gaussian Mixture Model (GMM) method. The developed robot learning framework allows learning from single and multiple demonstrations. As soon as the robot has the knowledge of a demonstrated task, it can perform the task in cooperation with the human. However, the need for adaptation of the learned knowledge may arise during the human-robot synergy. Firstly, Interactive Reinforcement Learning (IRL) is employed as a decision support method to predict the sequence of actions in real-time, to keep the human in the loop and to enable learning the usera s preferences. Subsequently, a novel method that modifies the learned Gaussian Mixture Model (m-GMM) is developed in this thesis. This method allows the robot to cope with changes in the environment, such as objects placed in a different from the demonstrated pose or obstacles, which may be introduced by the human teammate. The modified Gaussian Mixture Model is further used by the Gaussian Mixture Regression (GMR) to generate a trajectory, which can efficiently control the robot. The developed framework for Robot Learning from Demonstrations was evaluated in two different robotic platforms: a dual-arm industrial robot and an assistive robotic manipulator. For both robotic platforms, small studies were performed for industrial and assistive manipulation tasks, respectively. Several Human-Robot Interaction (HRI) methods, such as kinesthetic teaching, gamepad or a hands-freea via head gestures, were used to provide the robot demonstrations. The a hands-freea HRI enables individuals with severe motor impairments to provide a demonstration of an assistive task. The experimental results demonstrate the potential of the developed robot learning framework to enable continuous humana robot synergy in industrial and assistive applications

    Adaptive Shared Autonomy between Human and Robot to Assist Mobile Robot Teleoperation

    Get PDF
    Die Teleoperation vom mobilen Roboter wird in großem Umfang eingesetzt, wenn es für Mensch unpraktisch oder undurchführbar ist, anwesend zu sein, aber die Entscheidung von Mensch wird dennoch verlangt. Es ist für Mensch stressig und fehleranfällig wegen Zeitverzögerung und Abwesenheit des Situationsbewusstseins, ohne Unterstützung den Roboter zu steuern einerseits, andererseits kann der völlig autonome Roboter, trotz jüngsten Errungenschaften, noch keine Aufgabe basiert auf die aktuellen Modelle der Wahrnehmung und Steuerung unabhängig ausführen. Deswegen müssen beide der Mensch und der Roboter in der Regelschleife bleiben, um gleichzeitig Intelligenz zur Durchführung von Aufgaben beizutragen. Das bedeut, dass der Mensch die Autonomie mit dem Roboter während des Betriebes zusammenhaben sollte. Allerdings besteht die Herausforderung darin, die beiden Quellen der Intelligenz vom Mensch und dem Roboter am besten zu koordinieren, um eine sichere und effiziente Aufgabenausführung in der Fernbedienung zu gewährleisten. Daher wird in dieser Arbeit eine neuartige Strategie vorgeschlagen. Sie modelliert die Benutzerabsicht als eine kontextuelle Aufgabe, um eine Aktionsprimitive zu vervollständigen, und stellt dem Bediener eine angemessene Bewegungshilfe bei der Erkennung der Aufgabe zur Verfügung. Auf diese Weise bewältigt der Roboter intelligent mit den laufenden Aufgaben auf der Grundlage der kontextuellen Informationen, entlastet die Arbeitsbelastung des Bedieners und verbessert die Aufgabenleistung. Um diese Strategie umzusetzen und die Unsicherheiten bei der Erfassung und Verarbeitung von Umgebungsinformationen und Benutzereingaben (i.e. der Kontextinformationen) zu berücksichtigen, wird ein probabilistischer Rahmen von Shared Autonomy eingeführt, um die kontextuelle Aufgabe mit Unsicherheitsmessungen zu erkennen, die der Bediener mit dem Roboter durchführt, und dem Bediener die angemesse Unterstützung der Aufgabenausführung nach diesen Messungen anzubieten. Da die Weise, wie der Bediener eine Aufgabe ausführt, implizit ist, ist es nicht trivial, das Bewegungsmuster der Aufgabenausführung manuell zu modellieren, so dass eine Reihe von der datengesteuerten Ansätzen verwendet wird, um das Muster der verschiedenen Aufgabenausführungen von menschlichen Demonstrationen abzuleiten, sich an die Bedürfnisse des Bedieners in einer intuitiven Weise über lange Zeit anzupassen. Die Praxistauglichkeit und Skalierbarkeit der vorgeschlagenen Ansätze wird durch umfangreiche Experimente sowohl in der Simulation als auch auf dem realen Roboter demonstriert. Mit den vorgeschlagenen Ansätzen kann der Bediener aktiv und angemessen unterstützt werden, indem die Kognitionsfähigkeit und Autonomieflexibilität des Roboters zu erhöhen
    corecore