4,679 research outputs found

    A cross layer multi hop network architecture for wireless Ad Hoc networks

    Get PDF
    In this paper, a novel decentralized cross-layer multi-hop cooperative network architecture is presented. Our architecture involves the design of a simple yet efficient cooperative flooding scheme,two decentralized opportunistic cooperative forwarding mechanisms as well as the design of Routing Enabled Cooperative Medium Access Control (RECOMAC) protocol that spans and incorporates the physical, medium access control (MAC) and routing layers for improving the performance of multihop communication. The proposed architecture exploits randomized coding at the physical layer to realize cooperative diversity. Randomized coding alleviates relay selection and actuation mechanisms,and therefore reduces the coordination among the relays. The coded packets are forwarded via opportunistically formed cooperative sets within a region, without communication among the relays and without establishing a prior route. In our architecture, routing layer functionality is submerged into the MAC layer to provide seamless cooperative communication while the messaging overhead to set up routes, select and actuate relays is minimized. RECOMAC is shown to provide dramatic performance improvements, such as eight times higher throughput and ten times lower end-to-end delay as well as reduced overhead, as compared to networks based on well-known IEEE 802.11 and Ad hoc On Demand Distance Vector (AODV) protocols

    Effective and Efficient Communication and Collaboration in Participatory Environments

    Get PDF
    Participatory environments pose significant challenges to deploying real applications. This dissertation investigates exploitation of opportunistic contacts to enable effective and efficient data transfers in challenged participatory environments. There are three main contributions in this dissertation: 1. A novel scheme for predicting contact volume during an opportunistic contact (PCV); 2. A method for computing paths with combined optimal stability and capacity (COSC) in opportunistic networks; and 3. An algorithm for mobility and orientation estimation in mobile environments (MOEME). The proposed novel scheme called PCV predicts contact volume in soft real-time. The scheme employs initial position and velocity vectors of nodes along with the data rate profile of the environment. PCV enables efficient and reliable data transfers between opportunistically meeting nodes. The scheme that exploits capacity and path stability of opportunistic networks is based on PCV for estimating individual link costs on a path. The total path cost is merged with a stability cost to strike a tradeoff for maximizing data transfers in the entire participatory environment. A polynomial time dynamic programming algorithm is proposed to compute paths of optimum cost. We propose another novel scheme for Real-time Mobility and Orientation Estimation for Mobile Environments (MOEME), as prediction of user movement paves way for efficient data transfers, resource allocation and event scheduling in participatory environments. MOEME employs the concept of temporal distances and uses logistic regression to make real time estimations about user movement. MOEME relies only on opportunistic message exchange and is fully distributed, scalable, and requires neither a central infrastructure nor Global Positioning System. Indeed, accurate prediction of contact volume, path capacity and stability and user movement can improve performance of deployments. However, existing schemes for such estimations make use of preconceived patterns or contact time distributions that may not be applicable in uncertain environments. Such patterns may not exist, or are difficult to recognize in soft-real time, in open environments such as parks, malls, or streets

    Social-Aware Forwarding Improves Routing Performance in Pocket Switched Networks

    Get PDF
    Several social-aware forwarding strategies have been recently introduced in opportunistic networks, and proved effective in considerably in- creasing routing performance through extensive simulation studies based on real-world data. However, this performance improvement comes at the expense of storing a considerable amount of state information (e.g, history of past encounters) at the nodes. Hence, whether the benefits on routing performance comes directly from the social-aware forwarding mechanism, or indirectly by the fact state information is exploited is not clear. Thus, the question of whether social-aware forwarding by itself is effective in improving opportunistic network routing performance remained unaddressed so far. In this paper, we give a first, positive answer to the above question, by investigating the expected message delivery time as the size of the net- work grows larger

    Message forwarding techniques in Bluetooth enabled opportunistic communication environment

    Get PDF
    These days, most of the mobile phones are smart enough with computer like intelligence and equipped with multiple communication technologies such as Bluetooth, wireless LAN, GPRS and GSM. Different communication medium on single device have unlocked the new horizon of communication means. Modern mobile phones are not only capable of using traditional way of communication via GSM or GPRS; but, also use wireless LANs using access points where available. Among these communication means, Bluetooth technology is very intriguing and unique in nature. Any two devices equipped with Bluetooth technology can communicate directly due to their unique IDs in the world. This is opposite to GSM or Wireless LAN technology; where devices are dependent on infrastructure of service providers and have to pay for their services. Due to continual advancement in the field of mobile technology, mobile ad-hoc network seems to be more realised than ever using Bluetooth. In traditional mobile ad-hoc networks (MANETs), before information sharing, devices have partial or full knowledge of routes to the destinations using ad-hoc routing protocols. This kind of communication can only be realised if nodes follow the certain pattern. However, in reality mobile ad-hoc networks are highly unpredictable, any node can join or leave network at any time, thus making them risky for effective communication. This issue is addressed by introducing new breed of ad-hoc networking, known as opportunistic networks. Opportunistic networking is a concept that is evolved from mobile ad-hoc networking. In opportunistic networks nodes have no prior knowledge of routes to intended destinations. Any node in the network can be used as potential forwarder with the exception of taking information one step closer to intended destination. The forwarding decision is based on the information gathered from the source node or encountering node. The opportunistic forwarding can only be achieved if message forwarding is carried out in store and forward fashion. Although, opportunistic networks are more flexible than traditional MANETs, however, due to little insight of network, it poses distinct challenges such as intermittent connectivity, variable delays, short connection duration and dynamic topology. Addressing these challenges in opportunistic network is the basis for developing new and efficient protocols for information sharing. The aim of this research is to design different routing/forwarding techniques for opportunistic networks to improve the overall message delivery at destinations while keeping the communication cost very low. Some assumptions are considered to improved directivity of message flow towards intended destinations. These assumptions exploit human social relationships analogies, approximate awareness of the location of nodes in the network and use of hybrid communication by combining several routing concept to gain maximum message directivity. Enhancement in message forwarding in opportunistic networks can be achieved by targeting key nodes that show high degree of influence, popularity or knowledge inside the network. Based on this observation, this thesis presents an improved version of Lobby Influence (LI) algorithm called as Enhanced Lobby Influence (ELI). In LI, the forwarding decision is based on two important factors, popularity of node and popularity of node’s neighbour. The forwarding decision of Enhanced Lobby Influence not only depends on the intermediate node selection criteria as defined in Lobby Influence but also based on the knowledge of previously direct message delivery of intended destination. An improvement can be observed if nodes are aware of approximate position of intended destinations by some communication means such as GPS, GSM or WLAN access points. With the knowledge of nodes position in the network, high message directivity can be achieved by using simple concepts of direction vectors. Based on this observation, this research presents another new algorithm named as Location-aware opportunistic content forwarding (LOC). Last but not least, this research presents an orthodox yet unexplored approach for efficient message forwarding in Bluetooth communication environment, named as Hybrid Content Forwarding (HCF). The new approach combines the characteristics of social centrality based forwarding techniques used in opportunistic networks with traditional MANETs protocols used in Bluetooth scatternets. Simulation results show that a significant increase in delivery radio and cost reduction during content forwarding is observed by deploying these proposed algorithms. Also, comparison with existing technique shows the efficiency of using the new schemes

    A Survey on Energy Efficient Network Coding for Multi-hop Routing in Wireless Sensor Networks

    Get PDF
    AbstractNetwork coding consists of intelligently aggregating data packets by means of binary or linear combinations. Recently, network coding has been proposed as a complementary solution for energy efficient multi-hop routing in Wireless Sensor Networks (WSNs). This is because network coding, through the aggregation of packets, considerably reduces the number of transmissions throughout the network. Although numerous network coding techniques for energy efficient routing have been developed in the literature, not much is known about a single survey article reporting on such energy efficient network coding within multi-hop WSNs. As a result, this paper addresses this gap by first classifying and discussing the recent developed energy efficient network coding techniques. The paper then identifies and explains open research opportunities based on analysis of merits of such techniques. This survey aims at providing the reader with a brief and concise idea on the current state-of-art research on network coding mainly focusing on its applications for energy efficient WSNs
    • …
    corecore