47,246 research outputs found

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    The Triple Helix Perspective of Innovation Systems

    Full text link
    Alongside the neo-institutional model of networked relations among universities, industries, and governments, the Triple Helix can be provided with a neo-evolutionary interpretation as three selection environments operating upon one another: markets, organizations, and technological opportunities. How are technological innovation systems different from national ones? The three selection environments fulfill social functions: wealth creation, organization control, and organized knowledge production. The main carriers of this system-industry, government, and academia-provide the variation both recursively and by interacting among them under the pressure of competition. Empirical case studies enable us to understand how these evolutionary mechanisms can be expected to operate in historical instance. The model is needed for distinguishing, for example, between trajectories and regimes

    Spatial interactions in agent-based modeling

    Full text link
    Agent Based Modeling (ABM) has become a widespread approach to model complex interactions. In this chapter after briefly summarizing some features of ABM the different approaches in modeling spatial interactions are discussed. It is stressed that agents can interact either indirectly through a shared environment and/or directly with each other. In such an approach, higher-order variables such as commodity prices, population dynamics or even institutions, are not exogenously specified but instead are seen as the results of interactions. It is highlighted in the chapter that the understanding of patterns emerging from such spatial interaction between agents is a key problem as much as their description through analytical or simulation means. The chapter reviews different approaches for modeling agents' behavior, taking into account either explicit spatial (lattice based) structures or networks. Some emphasis is placed on recent ABM as applied to the description of the dynamics of the geographical distribution of economic activities, - out of equilibrium. The Eurace@Unibi Model, an agent-based macroeconomic model with spatial structure, is used to illustrate the potential of such an approach for spatial policy analysis.Comment: 26 pages, 5 figures, 105 references; a chapter prepared for the book "Complexity and Geographical Economics - Topics and Tools", P. Commendatore, S.S. Kayam and I. Kubin, Eds. (Springer, in press, 2014

    Governance, scale and the environment: the importance of recognizing knowledge claims in transdisciplinary arenas

    Get PDF
    Any present day approach of the world’s most pressing environmental problems involves both scale and governance issues. After all, current local events might have long-term global consequences (the scale issue) and solving complex environmental problems requires policy makers to think and govern beyond generally used time-space scales (the governance issue). To an increasing extent, the various scientists in these fields have used concepts like social-ecological systems, hierarchies, scales and levels to understand and explain the “complex cross-scale dynamics” of issues like climate change. A large part of this work manifests a realist paradigm: the scales and levels, either in ecological processes or in governance systems, are considered as “real”. However, various scholars question this position and claim that scales and levels are continuously (re)constructed in the interfaces of science, society, politics and nature. Some of these critics even prefer to adopt a non-scalar approach, doing away with notions such as hierarchy, scale and level. Here we take another route, however. We try to overcome the realist-constructionist dualism by advocating a dialogue between them on the basis of exchanging and reflecting on different knowledge claims in transdisciplinary arenas. We describe two important developments, one in the ecological scaling literature and the other in the governance literature, which we consider to provide a basis for such a dialogue. We will argue that scale issues, governance practices as well as their mutual interdependencies should be considered as human constructs, although dialectically related to nature’s materiality, and therefore as contested processes, requiring intensive and continuous dialogue and cooperation among natural scientists, social scientists, policy makers and citizens alike. They also require critical reflection on scientists’ roles and on academic practices in general. Acknowledging knowledge claims provides a common ground and point of departure for such cooperation, something we think is not yet sufficiently happening, but which is essential in addressing today’s environmental problems
    corecore