1,014 research outputs found

    Context-driven Object Detection and Segmentation with Auxiliary Information

    No full text
    One fundamental problem in computer vision and robotics is to localize objects of interest in an image. The task can either be formulated as an object detection problem if the objects are described by a set of pose parameters, or an object segmentation one if we recover object boundary precisely. A key issue in object detection and segmentation concerns exploiting the spatial context, as local evidence is often insufficient to determine object pose in the presence of heavy occlusions or large object appearance variations. This thesis addresses the object detection and segmentation problem in such adverse conditions with auxiliary depth data provided by RGBD cameras. We focus on four main issues in context-aware object detection and segmentation: 1) what are the effective context representations? 2) how can we work with limited and imperfect depth data? 3) how to design depth-aware features and integrate depth cues into conventional visual inference tasks? 4) how to make use of unlabeled data to relax the labeling requirements for training data? We discuss three object detection and segmentation scenarios based on varying amounts of available auxiliary information. In the first case, depth data are available for model training but not available for testing. We propose a structured Hough voting method for detecting objects with heavy occlusion in indoor environments, in which we extend the Hough hypothesis space to include both the object's location, and its visibility pattern. We design a new score function that accumulates votes for object detection and occlusion prediction. In addition, we explore the correlation between objects and their environment, building a depth-encoded object-context model based on RGBD data. In the second case, we address the problem of localizing glass objects with noisy and incomplete depth data. Our method integrates the intensity and depth information from a single view point, and builds a Markov Random Field that predicts glass boundary and region jointly. In addition, we propose a nonparametric, data-driven label transfer scheme for local glass boundary estimation. A weighted voting scheme based on a joint feature manifold is adopted to integrate depth and appearance cues, and we learn a distance metric on the depth-encoded feature manifold. In the third case, we make use of unlabeled data to relax the annotation requirements for object detection and segmentation, and propose a novel data-dependent margin distribution learning criterion for boosting, which utilizes the intrinsic geometric structure of datasets. One key aspect of this method is that it can seamlessly incorporate unlabeled data by including a graph Laplacian regularizer. We demonstrate the performance of our models and compare with baseline methods on several real-world object detection and segmentation tasks, including indoor object detection, glass object segmentation and foreground segmentation in video

    Machine Learning in Automated Text Categorization

    Full text link
    The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert manpower, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey

    Investigating Class-level Difficulty Factors in Multi-label Classification Problems

    Get PDF
    This work investigates the use of class-level difficulty factors in multi-label classification problems for the first time. Four class-level difficulty factors are proposed: frequency, visual variation, semantic abstraction, and class co-occurrence. Once computed for a given multi-label classification dataset, these difficulty factors are shown to have several potential applications including the prediction of class-level performance across datasets and the improvement of predictive performance through difficulty weighted optimisation. Significant improvements to mAP and AUC performance are observed for two challenging multi-label datasets (WWW Crowd and Visual Genome) with the inclusion of difficulty weighted optimisation. The proposed technique does not require any additional computational complexity during training or inference and can be extended over time with inclusion of other class-level difficulty factors.Comment: Published in ICME 202

    Classification Arabic Twitter User’s Insights Using Rough Set Theory

    Get PDF
    Nowadays, people using social media from around the world to share their daily affairs. Arabic twitter for example is a platform where users read, reply, post which known ‘tweets’. Users trading their opinions on different trends that are not equal in important and differed based on their power and interest. Tweets can provide rich information to make decision. The main objective of this paper is to present a framework for making a valuable decision through analyzing social users' insights based on their proximity to a particular trend with highlights their power in this trend. Tweets are exceedingly unstructured that makes it difficult to analyze. Nevertheless, our proposed model differs from previous research in this field it gathered the use of supervised and unsupervised machine learning algorithms. The process of performing this work as follows: classifying users based on the degree of their closeness/interest utilizing Mendelow’s power/interest matrix, rough set theory to eliminate the features that may be found in user profiles to find minimal sets of data. The proposed model applied two attribute reduction algorithms on our dataset to determine the optimal number of reducts for improving decision making from the user replies. In addition to, unsupervised machine learning to group their replies into subcategories such as positive, negative, or neutral. The experimental evaluation shows that Johnson algorithm has reduced the user attributes by 71% than genetic algorithm that utilized in a classification model

    It is all about where you start: Text-to-image generation with seed selection

    Full text link
    Text-to-image diffusion models can synthesize a large variety of concepts in new compositions and scenarios. However, they still struggle with generating uncommon concepts, rare unusual combinations, or structured concepts like hand palms. Their limitation is partly due to the long-tail nature of their training data: web-crawled data sets are strongly unbalanced, causing models to under-represent concepts from the tail of the distribution. Here we characterize the effect of unbalanced training data on text-to-image models and offer a remedy. We show that rare concepts can be correctly generated by carefully selecting suitable generation seeds in the noise space, a technique that we call SeedSelect. SeedSelect is efficient and does not require retraining the diffusion model. We evaluate the benefit of SeedSelect on a series of problems. First, in few-shot semantic data augmentation, where we generate semantically correct images for few-shot and long-tail benchmarks. We show classification improvement on all classes, both from the head and tail of the training data of diffusion models. We further evaluate SeedSelect on correcting images of hands, a well-known pitfall of current diffusion models, and show that it improves hand generation substantially

    Word sense disambiguation for event trigger word detection in biomedicine

    Get PDF
    This paper describes a method for detecting event trigger words in biomedical text based on a word sense disambiguation (WSD) approach. We first investigate the applicability of existing WSD techniques to trigger word disambiguation in the BioNLP 2009 shared task data, and find that we are able to outperform a traditional CRF-based approach for certain word types. On the basis of this finding, we combine the WSD approach with the CRF, and obtain significant improvements over the standalone CRF, gaining particularly in recall
    • …
    corecore