310 research outputs found

    Using Header Session Messages to Filter-out Junk E-mails

    Get PDF
    Due to the popularity of Internet, e-mail use is the major activity when surfing Internet. However, in recent years, spam has become a major problem that is bothering the use of the e-mail. Many anti-spam filtering techniques have been implemented so far, such as RIPPER rule learning algorithm, Naïve Bayesian classifier, Support Vector Machine, Centroid Based, Decision trees or Memory-base filter. Most existed anti-spamming techniques filter junk emails out according to e-mail subjects and body messages. Nevertheless, subjects and e-mail contents are not the only cues for spamming judgment. In this paper, we present a new idea of filtering junk e-mail by utilizing the header session messages. In message head session, besides sender\u27s mail address, receiver\u27s mail address and time etc, users are not interested in other information. This paper conducted two content analyses. The first content analysis adopted 10,024 Junk e-mails collected by Spam Archive (http://spamarchive.org) in a two-months period. The second content analysis adopted 3,482 emails contributed by three volunteers for a one week period. According to content analysis results, this result shows that at most 92.5% of junk e-mails would be filtered out using message-ID, mail user agent, sender and receiver addresses in the header session as cues. In addition, the idea this study proposed may induce zero over block errors rate. This characteristic of zero over block errors rate is an important advantage for the antispamming approach this study proposed. This proposed idea of using header session messages to filter-out junk e-mails may coexist with other anti-spamming approaches. Therefore, no conflict would be found between the proposed idea and existing anti-spamming approaches

    On privacy and the prevention of unsolicited sessions in the IP multimedia subsystem

    Get PDF
    Includes abstract. Includes bibliographical references (leaves 168-175)

    Security Enhancements in Voice Over Ip Networks

    Get PDF
    Voice delivery over IP networks including VoIP (Voice over IP) and VoLTE (Voice over LTE) are emerging as the alternatives to the conventional public telephony networks. With the growing number of subscribers and the global integration of 4/5G by operations, VoIP/VoLTE as the only option for voice delivery becomes an attractive target to be abused and exploited by malicious attackers. This dissertation aims to address some of the security challenges in VoIP/VoLTE. When we examine the past events to identify trends and changes in attacking strategies, we find that spam calls, caller-ID spoofing, and DoS attacks are the most imminent threats to VoIP deployments. Compared to email spam, voice spam will be much more obnoxious and time consuming nuisance for human subscribers to filter out. Since the threat of voice spam could become as serious as email spam, we first focus on spam detection and propose a content-based approach to protect telephone subscribers\u27 voice mailboxes from voice spam. Caller-ID has long been used to enable the callee parties know who is calling, verify his identity for authentication and his physical location for emergency services. VoIP and other packet switched networks such as all-IP Long Term Evolution (LTE) network provide flexibility that helps subscribers to use arbitrary caller-ID. Moreover, interconnecting between IP telephony and other Circuit-Switched (CS) legacy telephone networks has also weakened the security of caller-ID systems. We observe that the determination of true identity of a calling device helps us in preventing many VoIP attacks, such as caller-ID spoofing, spamming and call flooding attacks. This motivates us to take a very different approach to the VoIP problems and attempt to answer a fundamental question: is it possible to know the type of a device a subscriber uses to originate a call? By exploiting the impreciseness of the codec sampling rate in the caller\u27s RTP streams, we propose a fuzzy rule-based system to remotely identify calling devices. Finally, we propose a caller-ID based public key infrastructure for VoIP and VoLTE that provides signature generation at the calling party side as well as signature verification at the callee party side. The proposed signature can be used as caller-ID trust to prevent caller-ID spoofing and unsolicited calls. Our approach is based on the identity-based cryptography, and it also leverages the Domain Name System (DNS) and proxy servers in the VoIP architecture, as well as the Home Subscriber Server (HSS) and Call Session Control Function (CSCF) in the IP Multimedia Subsystem (IMS) architecture. Using OPNET, we then develop a comprehensive simulation testbed for the evaluation of our proposed infrastructure. Our simulation results show that the average call setup delays induced by our infrastructure are hardly noticeable by telephony subscribers and the extra signaling overhead is negligible. Therefore, our proposed infrastructure can be adopted to widely verify caller-ID in telephony networks

    Modeling Spammer Behavior: Artificial Neural Network vs. Naïve Bayesian Classifier

    Get PDF
    The exponential growth of spam emails in recent years is a fact of life. Internet subscribers world-wide are unwittingly paying an estimated €10 billion a year in connection costs just to receive “junk” emails, according to a study undertaken for the European Commission. Though there is no universal definition of spam, unwanted and unsolicited commercial email as a mass mailing to a large number of recipients is basically known as the junk email or spam to the internet community. Spams are considered to be potential threat to Internet Security. Spam's direct effects include the consumption of computer and network resources and the cost in human time and attention of dismissing unwanted messages. More importantly, these ever increasing spams are taking various forms and finding home not only in mailboxes but also in newsgroups, discussion forums etc without the consent of the recipients. Overflowing mailboxes are overwhelming users, causing newsgroups and discussion forums to be flooded with irrelevant or inappropriate messages. As a consequence, users are getting discouraged not to use them anymore though these systems can provide numerous benefits to them.Full Tex

    Evaluation of Email Spam Detection Techniques

    Get PDF
    Email has become a vital form of communication among individuals and organizations in today’s world. However, simultaneously it became a threat to many users in the form of spam emails which are also referred as junk/unsolicited emails. Most of the spam emails received by the users are in the form of commercial advertising, which usually carry computer viruses without any notifications. Today, 95% of the email messages across the world are believed to be spam, therefore it is essential to develop spam detection techniques. There are different techniques to detect and filter the spam emails, but off recently all the developed techniques are being implemented successfully to minimize the threats. This paper describes how the current spam email detection approaches are determining and evaluating the problems. There are different types of techniques developed based on Reputation, Origin, Words, Multimedia, Textual, Community, Rules, Hybrid, Machine learning, Fingerprint, Social networks, Protocols, Traffic analysis, OCR techniques, Low-level features, and many other techniques. All these filtering techniques are developed to detect and evaluate spam emails. Along with classification of the email messages into spam or ham, this paper also demonstrates the effectiveness and accuracy of the spam detection techniques

    Technical and Legal Approaches to Unsolicited Electronic Mail

    Get PDF

    Addressing the new generation of spam (Spam 2.0) through Web usage models

    Get PDF
    New Internet collaborative media introduce new ways of communicating that are not immune to abuse. A fake eye-catching profile in social networking websites, a promotional review, a response to a thread in online forums with unsolicited content or a manipulated Wiki page, are examples of new the generation of spam on the web, referred to as Web 2.0 Spam or Spam 2.0. Spam 2.0 is defined as the propagation of unsolicited, anonymous, mass content to infiltrate legitimate Web 2.0 applications.The current literature does not address Spam 2.0 in depth and the outcome of efforts to date are inadequate. The aim of this research is to formalise a definition for Spam 2.0 and provide Spam 2.0 filtering solutions. Early-detection, extendibility, robustness and adaptability are key factors in the design of the proposed method.This dissertation provides a comprehensive survey of the state-of-the-art web spam and Spam 2.0 filtering methods to highlight the unresolved issues and open problems, while at the same time effectively capturing the knowledge in the domain of spam filtering.This dissertation proposes three solutions in the area of Spam 2.0 filtering including: (1) characterising and profiling Spam 2.0, (2) Early-Detection based Spam 2.0 Filtering (EDSF) approach, and (3) On-the-Fly Spam 2.0 Filtering (OFSF) approach. All the proposed solutions are tested against real-world datasets and their performance is compared with that of existing Spam 2.0 filtering methods.This work has coined the term ‘Spam 2.0’, provided insight into the nature of Spam 2.0, and proposed filtering mechanisms to address this new and rapidly evolving problem
    corecore