30,678 research outputs found

    Explainable Artificial Intelligence (XAI) from a user perspective- A synthesis of prior literature and problematizing avenues for future research

    Full text link
    The final search query for the Systematic Literature Review (SLR) was conducted on 15th July 2022. Initially, we extracted 1707 journal and conference articles from the Scopus and Web of Science databases. Inclusion and exclusion criteria were then applied, and 58 articles were selected for the SLR. The findings show four dimensions that shape the AI explanation, which are format (explanation representation format), completeness (explanation should contain all required information, including the supplementary information), accuracy (information regarding the accuracy of the explanation), and currency (explanation should contain recent information). Moreover, along with the automatic representation of the explanation, the users can request additional information if needed. We have also found five dimensions of XAI effects: trust, transparency, understandability, usability, and fairness. In addition, we investigated current knowledge from selected articles to problematize future research agendas as research questions along with possible research paths. Consequently, a comprehensive framework of XAI and its possible effects on user behavior has been developed

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science.https://digitalcommons.unomaha.edu/isqafacbooks/1000/thumbnail.jp

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science

    Survey on AI Ethics: A Socio-technical Perspective

    Full text link
    The past decade has observed a great advancement in AI with deep learning-based models being deployed in diverse scenarios including safety-critical applications. As these AI systems become deeply embedded in our societal infrastructure, the repercussions of their decisions and actions have significant consequences, making the ethical implications of AI deployment highly relevant and important. The ethical concerns associated with AI are multifaceted, including challenging issues of fairness, privacy and data protection, responsibility and accountability, safety and robustness, transparency and explainability, and environmental impact. These principles together form the foundations of ethical AI considerations that concern every stakeholder in the AI system lifecycle. In light of the present ethical and future x-risk concerns, governments have shown increasing interest in establishing guidelines for the ethical deployment of AI. This work unifies the current and future ethical concerns of deploying AI into society. While we acknowledge and appreciate the technical surveys for each of the ethical principles concerned, in this paper, we aim to provide a comprehensive overview that not only addresses each principle from a technical point of view but also discusses them from a social perspective

    Explanation as a Social Practice: Toward a Conceptual Framework for the Social Design of AI Systems

    Get PDF
    none20siThe recent surge of interest in explainability in artificial intelligence (XAI) is propelled by not only technological advancements in machine learning, but also by regulatory initiatives to foster transparency in algorithmic decision making. In this article, we revise the current concept of explainability and identify three limitations: passive explainee, narrow view on the social process, and undifferentiated assessment of understanding. In order to overcome these limitations, we present explanation as a social practice in which explainer and explainee co-construct understanding on the microlevel. We view the co-construction on a microlevel as embedded into a macrolevel, yielding expectations concerning, e.g., social roles or partner models: Typically, the role of the explainer is to provide an explanation and to adapt it to the current level of understanding of the explainee; the explainee, in turn, is expected to provide cues that guide the explainer. Building on explanations being a social practice, we present a conceptual framework that aims to guide future research in XAI. The framework relies on the key concepts of monitoring and scaffolding to capture the development of interaction. We relate our conceptual framework and our new perspective on explaining to transparency and autonomy as objectives considered for XAInoneKatharina J. Rohlfing; Philipp Cimiano; Ingrid Scharlau; Tobias Matzner; Heike M. Buhl; Hendrik Buschmeier; Elena Esposito; Angela Grimminger; Barbara Hammer; Reinhold Häb-Umbach; Ilona Horwath; Eyke Hüllermeier; Friederike Kern; Stefan Kopp; Kirsten Thommes; Axel-Cyrille Ngonga Ngomo; Carsten Schulte; Henning Wachsmuth; Petra Wagner; Britta WredeKatharina J. Rohlfing; Philipp Cimiano; Ingrid Scharlau; Tobias Matzner; Heike M. Buhl; Hendrik Buschmeier; Elena Esposito; Angela Grimminger; Barbara Hammer; Reinhold Häb-Umbach; Ilona Horwath; Eyke Hüllermeier; Friederike Kern; Stefan Kopp; Kirsten Thommes; Axel-Cyrille Ngonga Ngomo; Carsten Schulte; Henning Wachsmuth; Petra Wagner; Britta Wred

    AI Transparency in the Age of LLMs: A Human-Centered Research Roadmap

    Full text link
    The rise of powerful large language models (LLMs) brings about tremendous opportunities for innovation but also looming risks for individuals and society at large. We have reached a pivotal moment for ensuring that LLMs and LLM-infused applications are developed and deployed responsibly. However, a central pillar of responsible AI -- transparency -- is largely missing from the current discourse around LLMs. It is paramount to pursue new approaches to provide transparency for LLMs, and years of research at the intersection of AI and human-computer interaction (HCI) highlight that we must do so with a human-centered perspective: Transparency is fundamentally about supporting appropriate human understanding, and this understanding is sought by different stakeholders with different goals in different contexts. In this new era of LLMs, we must develop and design approaches to transparency by considering the needs of stakeholders in the emerging LLM ecosystem, the novel types of LLM-infused applications being built, and the new usage patterns and challenges around LLMs, all while building on lessons learned about how people process, interact with, and make use of information. We reflect on the unique challenges that arise in providing transparency for LLMs, along with lessons learned from HCI and responsible AI research that has taken a human-centered perspective on AI transparency. We then lay out four common approaches that the community has taken to achieve transparency -- model reporting, publishing evaluation results, providing explanations, and communicating uncertainty -- and call out open questions around how these approaches may or may not be applied to LLMs. We hope this provides a starting point for discussion and a useful roadmap for future research
    • …
    corecore