408 research outputs found

    Network architecture for large-scale distributed virtual environments

    Get PDF
    Distributed Virtual Environments (DVEs) provide 3D graphical computer generated environments with stereo sound, supporting real-time collaboration between potentially large numbers of users distributed around the world. Early DVEs has been used over local area networks (LANs). Recently with the Internet's development into the most common embedding for DVEs these distributed applications have been moved towards an exploiting IP networks. This has brought the scalability challenges into the DVEs evolution. The network bandwidth resource is the more limited resource of the DVE system and to improve the DVE's scalability it is necessary to manage carefully this resource. To achieve the saving in the network bandwidth the different types of the network traffic that is produced by the DVEs have to be considered. DVE applications demand· exchange of the data that forms different types of traffic such as a computer data type, video and audio, and a 3D data type to keep the consistency of the application's state. The problem is that the meeting of the QoS requirements of both control and continuous media traffic already have been covered by the existing research. But QoS for transfer of the 3D information has not really been considered. The 3D DVE geometry traffic is very bursty in nature and places a high demands on the network for short intervals of time due to the quite large size of the 3D models and the DVE application requirements to transmit a 3D data as quick as possible. The main motivation in carrying out the work presented in this thesis is to find a solution to improve the scalability of the DVE applications by a consideration the QoS requirements of the 3D DVE geometrical data type. In this work we are investigating the possibility to decrease the network bandwidth utilization by the 3D DVE traffic using the level of detail (LOD) concept and the active networking approach. The background work of the thesis surveys the DVE applications and the scalability requirements of the DVE systems. It also discusses the active networks and multiresolution representation and progressive transmission of the 3D data. The new active networking approach to the transmission of the 3D geometry data within the DVE systems is proposed in this thesis. This approach enhances the currently applied peer-to-peer DVE architecture by adding to the peer-to-peer multicast neny_ork layer filtering of the 3D flows an application level filtering on the active intermediate nodes. The active router keeps the application level information about the placements of users. This information is used by active routers to prune more detailed 3D data flows (higher LODs) in the multicast tree arches that are linked to the distance DVE participants. The exploration of possible benefits of exploiting the proposed active approach through the comparison with the non-active approach is carried out using the simulation­based performance modelling approach. Complex interactions between participants in DVE application and a large number of analyzed variables indicate that flexible simulation is more appropriate than mathematical modelling. To build a test bed will not be feasible. Results from the evaluation demonstrate that the proposed active approach shows potential benefits to the improvement of the DVE's scalability but the degree of improvement depends on the users' movement pattern. Therefore, other active networking methods to support the 3D DVE geometry transmission may also be required

    Design and implementation of MDeluge multicast code dissemination system for wireless sensor networks.

    Get PDF
    No abstract available.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b130982

    Cochlear Compartments Segmentation and Pharmacokinetics using Micro Computed Tomography Images

    Get PDF
    Local drug delivery to the inner ear via micropump implants has the potential to be much more effective than oral drug delivery for treating patients with sensorineural hearing loss and to protect hearing from ototoxic insult due to noise exposure. Delivering appropriate concentrations of drugs to the necessary cochlear compartments is of paramount importance; however, directly measuring local drug concentrations over time throughout the cochlea is not possible. Indirect measurement using otoacoustic emissions and auditory brainstem response are ineffective as they only provide an estimate of concentration and are susceptible to non-linear sensitivity effects. Imaging modalities such as MRI with infused gadolinium contrast agent are limited due to the high spatial resolution requirement for pharmacokinetic analysis, especially in mice with cochlear length in the micron scale. We develop an intracochlear pharmacokinetic model using micro-computed tomography imaging of the cochlea during in vivo infusion of a contrast agent at the basal end of scala tympani through a cochleostomy. This approach requires accurately segmenting the main cochlear compartments: scala tympani (ST), scala media (SM) and scala vestibuli (SV). Each scan was segmented using 1) atlas-based deformable registration, and 2) V-Net, a encoder-decoder style convolutional neural network. The segmentation of these cochlear regions enable concentrations to be extracted along the length of each scala. These spatio-temporal concentration profiles are used to learn a concentration dependent diffusion coefficient, and transport parameters between the major scalae and to clearance. The pharmacokinetic model results are comparable to the current state of the art model, and can simulate concentrations for cases involving different infusion molecules and drug delivery protocols. While our model shows promising results, to extend the approach to larger animals and to generate accurate further experimental data, computational constraints, and time requirements of previous segmentation methods need to be mitigated. To this end, we extended the V-Net architecture with inclusion of spatial attention. Moreover, to enable segmentation in hardware restricted environments, we designed a 3D segmentation network using Capsule Networks that can provide improved segmentation performance along with 90% reduction in trainable parameters. Finally, to demonstrate the effectiveness of these networks, we test them on multiple public datasets. They are also tested on the cochlea dataset and pharmacokinetic model simulations will be validated against existing results

    Proceedings, MSVSCC 2019

    Get PDF
    Old Dominion University Department of Modeling, Simulation & Visualization Engineering (MSVE) and the Virginia Modeling, Analysis and Simulation Center (VMASC) held the 13th annual Modeling, Simulation & Visualization (MSV) Student Capstone Conference on April 18, 2019. The Conference featured student research and student projects that are central to MSV. Also participating in the conference were faculty members who volunteered their time to impart direct support to their students’ research, facilitated the various conference tracks, served as judges for each of the tracks, and provided overall assistance to the conference. Appreciating the purpose of the conference and working in a cohesive, collaborative effort, resulted in a successful symposium for everyone involved. These proceedings feature the works that were presented at the conference. Capstone Conference Chair: Dr. Yuzhong Shen Capstone Conference Student Chair: Daniel Pere

    Deep Learning Based Malware Classification Using Deep Residual Network

    Get PDF
    The traditional malware detection approaches rely heavily on feature extraction procedure, in this paper we proposed a deep learning-based malware classification model by using a 18-layers deep residual network. Our model uses the raw bytecodes data of malware samples, converting the bytecodes to 3-channel RGB images and then applying the deep learning techniques to classify the malwares. Our experiment results show that the deep residual network model achieved an average accuracy of 86.54% by 5-fold cross validation. Comparing to the traditional methods for malware classification, our deep residual network model greatly simplify the malware detection and classification procedures, it achieved a very good classification accuracy as well. The dataset we used in this paper for training and testing is Malimg dataset, one of the biggest malware datasets released by vision research lab of UCSB

    19th SC@RUG 2022 proceedings 2021-2022

    Get PDF

    Diagnóstico automático de melanoma mediante técnicas modernas de aprendizaje automático

    Get PDF
    The incidence and mortality rates of skin cancer remain a huge concern in many countries. According to the latest statistics about melanoma skin cancer, only in the Unites States, 7,650 deaths are expected in 2022, which represents 800 and 470 more deaths than 2020 and 2021, respectively. In 2022, melanoma is ranked as the fifth cause of new cases of cancer, with a total of 99,780 people. This illness is mainly diagnosed with a visual inspection of the skin, then, if doubts remain, a dermoscopic analysis is performed. The development of e_ective non-invasive diagnostic tools for the early stages of the illness should increase quality of life, and decrease the required economic resources. The early diagnosis of skin lesions remains a tough task even for expert dermatologists because of the complexity, variability, dubiousness of the symptoms, and similarities between the different categories among skin lesions. To achieve this goal, previous works have shown that early diagnosis from skin images can benefit greatly from using computational methods. Several studies have applied handcrafted-based methods on high quality dermoscopic and histological images, and on top of that, machine learning techniques, such as the k-nearest neighbors approach, support vector machines and random forest. However, one must bear in mind that although the previous extraction of handcrafted features incorporates an important knowledge base into the analysis, the quality of the extracted descriptors relies heavily on the contribution of experts. Lesion segmentation is also performed manually. The above procedures have a common issue: they are time-consuming manual processes prone to errors. Furthermore, an explicit definition of an intuitive and interpretable feature is hardly achievable, since it depends on pixel intensity space and, therefore, they are not invariant regarding the differences in the input images. On the other hand, the use of mobile devices has sharply increased, which offers an almost unlimited source of data. In the past few years, more and more attention has been paid to designing deep learning models for diagnosing melanoma, more specifically Convolutional Neural Networks. This type of model is able to extract and learn high-level features from raw images and/or other data without the intervention of experts. Several studies showed that deep learning models can overcome handcrafted-based methods, and even match the predictive performance of dermatologists. The International Skin Imaging Collaboration encourages the development of methods for digital skin imaging. Every year since 2016 to 2019, a challenge and a conference have been organized, in which more than 185 teams have participated. However, convolutional models present several issues for skin diagnosis. These models can fit on a wide diversity of non-linear data points, being prone to overfitting on datasets with small numbers of training examples per class and, therefore, attaining a poor generalization capacity. On the other hand, this type of model is sensitive to some characteristics in data, such as large inter-class similarities and intra-class variances, variations in viewpoints, changes in lighting conditions, occlusions, and background clutter, which can be mostly found in non-dermoscopic images. These issues represent challenges for the application of automatic diagnosis techniques in the early phases of the illness. As a consequence of the above, the aim of this Ph.D. thesis is to make significant contributions to the automatic diagnosis of melanoma. The proposals aim to avoid overfitting and improve the generalization capacity of deep models, as well as to achieve a more stable learning and better convergence. Bear in mind that research into deep learning commonly requires an overwhelming processing power in order to train complex architectures. For example, when developing NASNet architecture, researchers used 500 x NVidia P100s - each graphic unit cost from 5,899to5,899 to 7,374, which represents a total of 2,949,500.002,949,500.00 - 3,687,000.00. Unfortunately, the majority of research groups do not have access to such resources, including ours. In this Ph.D. thesis, the use of several techniques has been explored. First, an extensive experimental study was carried out, which included state-of-the-art models and methods to further increase the performance. Well-known techniques were applied, such as data augmentation and transfer learning. Data augmentation is performed in order to balance out the number of instances per category and act as a regularizer in preventing overfitting in neural networks. On the other hand, transfer learning uses weights of a pre-trained model from another task, as the initial condition for the learning of the target network. Results demonstrate that the automatic diagnosis of melanoma is a complex task. However, different techniques are able to mitigate such issues in some degree. Finally, suggestions are given about how to train convolutional models for melanoma diagnosis and future interesting research lines were presented. Next, the discovery of ensemble-based architectures is tackled by using genetic algorithms. The proposal is able to stabilize the training process. This is made possible by finding sub-optimal combinations of abstract features from the ensemble, which are used to train a convolutional block. Then, several predictive blocks are trained at the same time, and the final diagnosis is achieved by combining all individual predictions. We empirically investigate the benefits of the proposal, which shows better convergence, mitigates the overfitting of the model, and improves the generalization performance. On top of that, the proposed model is available online and can be consulted by experts. The next proposal is focused on designing an advanced architecture capable of fusing classical convolutional blocks and a novel model known as Dynamic Routing Between Capsules. This approach addresses the limitations of convolutional blocks by using a set of neurons instead of an individual neuron in order to represent objects. An implicit description of the objects is learned by each capsule, such as position, size, texture, deformation, and orientation. In addition, a hyper-tuning of the main parameters is carried out in order to ensure e_ective learning under limited training data. An extensive experimental study was conducted where the fusion of both methods outperformed six state-of-the-art models. On the other hand, a robust method for melanoma diagnosis, which is inspired on residual connections and Generative Adversarial Networks, is proposed. The architecture is able to produce plausible photorealistic synthetic 512 x 512 skin images, even with small dermoscopic and non-dermoscopic skin image datasets as problema domains. In this manner, the lack of data, the imbalance problems, and the overfitting issues are tackled. Finally, several convolutional modes are extensively trained and evaluated by using the synthetic images, illustrating its effectiveness in the diagnosis of melanoma. In addition, a framework, which is inspired on Active Learning, is proposed. The batch-based query strategy setting proposed in this work enables a more faster training process by learning about the complexity of the data. Such complexities allow us to adjust the training process after each epoch, which leads the model to achieve better performance in a lower number of iterations compared to random mini-batch sampling. Then, the training method is assessed by analyzing both the informativeness value of each image and the predictive performance of the models. An extensive experimental study is conducted, where models trained with the proposal attain significantly better results than the baseline models. The findings suggest that there is still space for improvement in the diagnosis of skin lesions. Structured laboratory data, unstructured narrative data, and in some cases, audio or observational data, are given by radiologists as key points during the interpretation of the prediction. This is particularly true in the diagnosis of melanoma, where substantial clinical context is often essential. For example, symptoms like itches and several shots of a skin lesion during a period of time proving that the lesion is growing, are very likely to suggest cancer. The use of different types of input data could help to improve the performance of medical predictive models. In this regard, a _rst evolutionary algorithm aimed at exploring multimodal multiclass data has been proposed, which surpassed a single-input model. Furthermore, the predictive features extracted by primary capsules could be used to train other models, such as Support Vector Machine
    corecore