11,867 research outputs found

    Using Deep Networks for Drone Detection

    Full text link
    Drone detection is the problem of finding the smallest rectangle that encloses the drone(s) in a video sequence. In this study, we propose a solution using an end-to-end object detection model based on convolutional neural networks. To solve the scarce data problem for training the network, we propose an algorithm for creating an extensive artificial dataset by combining background-subtracted real images. With this approach, we can achieve precision and recall values both of which are high at the same time.Comment: To appear in International Workshop on Small-Drone Surveillance, Detection and Counteraction Techniques organised within AVSS 201

    Drone Tracking with Drone using Deep Learning

    Get PDF
    With the development of technology, studies in fields such as artificial intelligence, computer vision and deep learning are increasing day by day. In line with these developments, object tracking and object detection studies have spread over wide areas. In this article, a study is presented by simulating two different drones, a leader and a follower drone, accompanied by deep learning algorithms. Within the scope of this study, it is aimed to perform a drone tracking with drone in an autonomous way. Two different approaches are developed and tested in the simulator environment within the scope of drone tracking. The first of these approaches is to enable the leader drone to detect the target drone by using object-tracking algorithms. YOLOv5 deep learning algorithm is preferred for object detection. A data set of approximately 2500 images was created for training the YOLOv5 algorithm. The Yolov5 object detection algorithm, which was trained with the created data set, reached a success rate of approximately 93% as a result of the training. As the second approach, the object-tracking algorithm we developed is used. Trainings were carried out in the simulator created in the Matlab environment. The results are presented in detail in the following sections. In this article, some artificial neural networks and some object tracking methods used in the literature are explained

    Audio-Based Drone Detection and Identification Using Deep Learning Techniques with Dataset Enhancement through Generative Adversarial Networks

    Get PDF
    Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones

    DDI: Drones Detection and Identification using Deep Learning Techniques

    Get PDF
    Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. Besides their useful applications, an alarming concern in regards to the physical infrastructure security, safety and privacy arose due to the potential of their use in malicious activities. To address this problem, wework towards the proposed solution by the following twofold contribution, first we propose a novel solution that automates the drone detection and identification processes using drone's acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. Therefore, we aim to fulfil this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio clips using a state of the art deep learning model known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact our proposed hybrid dataset has on drone detection. The second contribution is laying the foundation for the next step of the anti-drone proposed system which is focused around swarm drones localisation and tracking using data fusion of audio and radio frequency signals using deep learning techniques. This is made possible through the design of a novel swarm of drones simulator. Our findings prove the advantage of using deep learning techniques with acoustic data for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones

    Eye in the Sky: Real-time Drone Surveillance System (DSS) for Violent Individuals Identification using ScatterNet Hybrid Deep Learning Network

    Full text link
    Drone systems have been deployed by various law enforcement agencies to monitor hostiles, spy on foreign drug cartels, conduct border control operations, etc. This paper introduces a real-time drone surveillance system to identify violent individuals in public areas. The system first uses the Feature Pyramid Network to detect humans from aerial images. The image region with the human is used by the proposed ScatterNet Hybrid Deep Learning (SHDL) network for human pose estimation. The orientations between the limbs of the estimated pose are next used to identify the violent individuals. The proposed deep network can learn meaningful representations quickly using ScatterNet and structural priors with relatively fewer labeled examples. The system detects the violent individuals in real-time by processing the drone images in the cloud. This research also introduces the aerial violent individual dataset used for training the deep network which hopefully may encourage researchers interested in using deep learning for aerial surveillance. The pose estimation and violent individuals identification performance is compared with the state-of-the-art techniques.Comment: To Appear in the Efficient Deep Learning for Computer Vision (ECV) workshop at IEEE Computer Vision and Pattern Recognition (CVPR) 2018. Youtube demo at this: https://www.youtube.com/watch?v=zYypJPJipY

    DroTrack: High-speed Drone-based Object Tracking Under Uncertainty

    Full text link
    We present DroTrack, a high-speed visual single-object tracking framework for drone-captured video sequences. Most of the existing object tracking methods are designed to tackle well-known challenges, such as occlusion and cluttered backgrounds. The complex motion of drones, i.e., multiple degrees of freedom in three-dimensional space, causes high uncertainty. The uncertainty problem leads to inaccurate location predictions and fuzziness in scale estimations. DroTrack solves such issues by discovering the dependency between object representation and motion geometry. We implement an effective object segmentation based on Fuzzy C Means (FCM). We incorporate the spatial information into the membership function to cluster the most discriminative segments. We then enhance the object segmentation by using a pre-trained Convolution Neural Network (CNN) model. DroTrack also leverages the geometrical angular motion to estimate a reliable object scale. We discuss the experimental results and performance evaluation using two datasets of 51,462 drone-captured frames. The combination of the FCM segmentation and the angular scaling increased DroTrack precision by up to 9%9\% and decreased the centre location error by 162162 pixels on average. DroTrack outperforms all the high-speed trackers and achieves comparable results in comparison to deep learning trackers. DroTrack offers high frame rates up to 1000 frame per second (fps) with the best location precision, more than a set of state-of-the-art real-time trackers.Comment: 10 pages, 12 figures, FUZZ-IEEE 202
    corecore