882 research outputs found

    Learning to Select Pre-Trained Deep Representations with Bayesian Evidence Framework

    Full text link
    We propose a Bayesian evidence framework to facilitate transfer learning from pre-trained deep convolutional neural networks (CNNs). Our framework is formulated on top of a least squares SVM (LS-SVM) classifier, which is simple and fast in both training and testing, and achieves competitive performance in practice. The regularization parameters in LS-SVM is estimated automatically without grid search and cross-validation by maximizing evidence, which is a useful measure to select the best performing CNN out of multiple candidates for transfer learning; the evidence is optimized efficiently by employing Aitken's delta-squared process, which accelerates convergence of fixed point update. The proposed Bayesian evidence framework also provides a good solution to identify the best ensemble of heterogeneous CNNs through a greedy algorithm. Our Bayesian evidence framework for transfer learning is tested on 12 visual recognition datasets and illustrates the state-of-the-art performance consistently in terms of prediction accuracy and modeling efficiency.Comment: Appearing in CVPR-2016 (oral presentation

    Agnostic Bayes

    Get PDF
    Tableau d'honneur de la FacultĂ© des Ă©tudes supĂ©rieures et postdorales, 2014-2015L’apprentissage automatique correspond Ă  la science de l’apprentissage Ă  partir d’exemples. Des algorithmes basĂ©s sur cette approche sont aujourd’hui omniprĂ©sents. Bien qu’il y ait eu un progrĂšs significatif, ce domaine prĂ©sente des dĂ©fis importants. Par exemple, simplement sĂ©lectionner la fonction qui correspond le mieux aux donnĂ©es observĂ©es n’offre aucune garantie statistiques sur les exemples qui n’ont pas encore Ă©tĂ© observĂ©es. Quelques thĂ©ories sur l’apprentissage automatique offrent des façons d’aborder ce problĂšme. Parmi ceux-ci, nous prĂ©sentons la modĂ©lisation bayĂ©sienne de l’apprentissage automatique et l’approche PACbayĂ©sienne pour l’apprentissage automatique dans une vue unifiĂ©e pour mettre en Ă©vidence d’importantes similaritĂ©s. Le rĂ©sultat de cette analyse suggĂšre que de considĂ©rer les rĂ©ponses de l’ensemble des modĂšles plutĂŽt qu’un seul correspond Ă  un des Ă©lĂ©ments-clĂ©s pour obtenir une bonne performance de gĂ©nĂ©ralisation. Malheureusement, cette approche vient avec un coĂ»t de calcul Ă©levĂ©, et trouver de bonnes approximations est un sujet de recherche actif. Dans cette thĂšse, nous prĂ©sentons une approche novatrice qui peut ĂȘtre appliquĂ©e avec un faible coĂ»t de calcul sur un large Ă©ventail de configurations d’apprentissage automatique. Pour atteindre cet objectif, nous appliquons la thĂ©orie de Bayes d’une maniĂšre diffĂ©rente de ce qui est conventionnellement fait pour l’apprentissage automatique. SpĂ©cifiquement, au lieu de chercher le vrai modĂšle Ă  l’origine des donnĂ©es observĂ©es, nous cherchons le meilleur modĂšle selon une mĂ©trique donnĂ©e. MĂȘme si cette diffĂ©rence semble subtile, dans cette approche, nous ne faisons pas la supposition que le vrai modĂšle appartient Ă  l’ensemble de modĂšles explorĂ©s. Par consĂ©quent, nous disons que nous sommes agnostiques. Plusieurs expĂ©rimentations montrent un gain de gĂ©nĂ©ralisation significatif en utilisant cette approche d’ensemble de modĂšles durant la phase de validation croisĂ©e. De plus, cet algorithme est simple Ă  programmer et n’ajoute pas un coĂ»t de calcul significatif Ă  la recherche d’hyperparamĂštres conventionnels. Finalement, cet outil probabiliste peut Ă©galement ĂȘtre utilisĂ© comme un test statistique pour Ă©valuer la qualitĂ© des algorithmes sur plusieurs ensembles de donnĂ©es d’apprentissage.Machine learning is the science of learning from examples. Algorithms based on this approach are now ubiquitous. While there has been significant progress, this field presents important challenges. Namely, simply selecting the function that best fits the observed data was shown to have no statistical guarantee on the examples that have not yet been observed. There are a few learning theories that suggest how to address this problem. Among these, we present the Bayesian modeling of machine learning and the PAC-Bayesian approach to machine learning in a unified view to highlight important similarities. The outcome of this analysis suggests that model averaging is one of the key elements to obtain a good generalization performance. Specifically, one should perform predictions based on the outcome of every model instead of simply the one that best fits the observed data. Unfortunately, this approach comes with a high computational cost problem, and finding good approximations is the subject of active research. In this thesis, we present an innovative approach that can be applied with a low computational cost on a wide range of machine learning setups. In order to achieve this, we apply the Bayes’ theory in a different way than what is conventionally done for machine learning. Specifically, instead of searching for the true model at the origin of the observed data, we search for the best model according to a given metric. While the difference seems subtle, in this approach, we do not assume that the true model belongs to the set of explored model. Hence, we say that we are agnostic. An extensive experimental setup shows a significant generalization performance gain when using this model averaging approach during the cross-validation phase. Moreover, this simple algorithm does not add a significant computational cost to the conventional search of hyperparameters. Finally, this probabilistic tool can also be used as a statistical significance test to evaluate the quality of learning algorithms on multiple datasets

    Predicting software faults in large space systems using machine learning techniques

    Get PDF
    Recently, the use of machine learning (ML) algorithms has proven to be of great practical value in solving a variety of engineering problems including the prediction of failure, fault, and defect-proneness as the space system software becomes complex. One of the most active areas of recent research in ML has been the use of ensemble classifiers. How ML techniques (or classifiers) could be used to predict software faults in space systems, including many aerospace systems is shown, and further use ensemble individual classifiers by having them vote for the most popular class to improve system software fault-proneness prediction. Benchmarking results on four NASA public datasets show the Naive Bayes classifier as more robust software fault prediction while most ensembles with a decision tree classifier as one of its components achieve higher accuracy rates

    Automatic machine learning:methods, systems, challenges

    Get PDF
    • 

    corecore