
Agnostic Bayes

Thèse

Alexandre Lacoste

Doctorat en informatique
Philosophiæ doctor (Ph.D.)

Québec, Canada

© Alexandre Lacoste, 2015





Résumé

L’apprentissage automatique correspond à la science de l’apprentissage à partir d’exemples.
Des algorithmes basés sur cette approche sont aujourd’hui omniprésents. Bien qu’il y ait eu
un progrès significatif, ce domaine présente des défis importants. Par exemple, simplement
sélectionner la fonction qui correspond le mieux aux données observées n’offre aucune ga-
rantie statistiques sur les exemples qui n’ont pas encore été observées. Quelques théories sur
l’apprentissage automatique offrent des façons d’aborder ce problème. Parmi ceux-ci, nous
présentons la modélisation bayésienne de l’apprentissage automatique et l’approche PAC-
bayésienne pour l’apprentissage automatique dans une vue unifiée pour mettre en évidence
d’importantes similarités. Le résultat de cette analyse suggère que de considérer les réponses
de l’ensemble des modèles plutôt qu’un seul correspond à un des éléments-clés pour obtenir
une bonne performance de généralisation. Malheureusement, cette approche vient avec un
coût de calcul élevé, et trouver de bonnes approximations est un sujet de recherche actif.

Dans cette thèse, nous présentons une approche novatrice qui peut être appliquée avec un
faible coût de calcul sur un large éventail de configurations d’apprentissage automatique.
Pour atteindre cet objectif, nous appliquons la théorie de Bayes d’une manière différente de
ce qui est conventionnellement fait pour l’apprentissage automatique. Spécifiquement, au lieu
de chercher le vrai modèle à l’origine des données observées, nous cherchons le meilleur modèle
selon une métrique donnée. Même si cette différence semble subtile, dans cette approche, nous
ne faisons pas la supposition que le vrai modèle appartient à l’ensemble de modèles explorés.
Par conséquent, nous disons que nous sommes agnostiques.

Plusieurs expérimentations montrent un gain de généralisation significatif en utilisant cette
approche d’ensemble de modèles durant la phase de validation croisée. De plus, cet algo-
rithme est simple à programmer et n’ajoute pas un coût de calcul significatif à la recherche
d’hyperparamètres conventionnels. Finalement, cet outil probabiliste peut également être uti-
lisé comme un test statistique pour évaluer la qualité des algorithmes sur plusieurs ensembles
de données d’apprentissage.
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Abstract

Machine learning is the science of learning from examples. Algorithms based on this approach
are now ubiquitous. While there has been significant progress, this field presents important
challenges. Namely, simply selecting the function that best fits the observed data was shown
to have no statistical guarantee on the examples that have not yet been observed. There are a
few learning theories that suggest how to address this problem. Among these, we present the
Bayesian modeling of machine learning and the PAC-Bayesian approach to machine learning
in a unified view to highlight important similarities. The outcome of this analysis suggests
that model averaging is one of the key elements to obtain a good generalization performance.
Specifically, one should perform predictions based on the outcome of every model instead of
simply the one that best fits the observed data. Unfortunately, this approach comes with a
high computational cost problem, and finding good approximations is the subject of active
research.

In this thesis, we present an innovative approach that can be applied with a low computational
cost on a wide range of machine learning setups. In order to achieve this, we apply the Bayes’
theory in a different way than what is conventionally done for machine learning. Specifically,
instead of searching for the true model at the origin of the observed data, we search for the
best model according to a given metric. While the difference seems subtle, in this approach,
we do not assume that the true model belongs to the set of explored model. Hence, we say
that we are agnostic.

An extensive experimental setup shows a significant generalization performance gain when
using this model averaging approach during the cross-validation phase. Moreover, this simple
algorithm does not add a significant computational cost to the conventional search of hyper-
parameters. Finally, this probabilistic tool can also be used as a statistical significance test
to evaluate the quality of learning algorithms on multiple datasets.
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Chapter 1

Introduction to Machine Learning

For a long time, it was thought that intelligence was related to the skills intelligent people
have. For example, playing chess and solving mathematical problems. Surprisingly, in the
quest for artificial intelligence, these tasks were quickly tackled by early computer programs. It
turns out that simpler tasks such as distinguishing the picture of a donkey from the picture of
a monkey are much harder to program than what was previously thought. Simply associating
a label to each possible image is intractable. For example, images of 100×100 pixels with 256
shades of gray yield 256100×100 possible images (a number composed of 24083 digits), which
is far beyond the number of atoms in the universe. To be more efficient, one can program
a set of rules that distinguishes monkeys from donkeys based on the values of the pixels.
Unfortunately, this approach is often tedious and highly sensitive to noise. For example, the
monkey can be upside down, partly hidden behind foliage, with a tuxedo, sunglasses and a
hat and still be a monkey. However, to achieve a reliable rule based algorithm for such a wide
range of scenarios requires a complex set of rules that are carefully tested and tuned. Even
then, it is likely to fail for scenarios that were not anticipated.

On the other hand most humans can learn such tasks after observing a few examples of
each class. This led computer scientists to approach this kind of problem through learning
by example and gave rise to the field of machine learning. In this paradigm, a learning
algorithm is given a collection of observations and produces a function that hopefully gen-
eralizes to unseen examples with high accuracy. What is central to this idea is the concept
of generalization, where it allows us to make predictions for situations we never encountered.
We will see that, when the learning algorithm is designed properly, we can obtain statistical
guarantees on the generalization performances of the learned model.

While machine learning was originally designed as a stepping stone towards artificial intelli-
gence, the ability to generalize and make predictions turned out to be an amazingly useful
ability and is now ubiquitous. Many services are now available in everyday life such as:
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Figure 1.1: Scene labeling example. (Best seen in color.) The task consists of categorizing each
pixel of an image into one of 8 predefined categories (sky, tree, road, grass, water, building,
mountain, or foreground object). The first row corresponds to the original image, and a color
mask is applied on the second row, to visualize the predictions made by the algorithm. Image
taken from Farabet et al. [2013].

• Google’s automatic translation service.1

• Reliable speech recognition systems on smartphones.

• Image search by content similarities2.

• Netflix’s movies recommendation system [Bell et al., 2007].

It is also often used to assist the scientific research, such as:

• Predictions of the complex interaction between proteins and molecules are used to assist
the search for new drugs [Giguère et al., 2013].

• Estimating the distortion of galaxy images caused by the mass of dark matter, helps
building a map of the dark matter in the universe.3

• Estimating the physical properties of the Higgs Boson.4

Finally it is worth noting the significant advances in tasks related to perception in artificial
intelligence:

• Complex Scene Labeling (Figure 1.1).
1https://translate.google.com/
2https://images.google.com/
3https://www.kaggle.com/c/mdm
4http://www.kaggle.com/c/higgs-boson
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• Solving language related tasks with almost no prior knowledge of the language [Collobert
et al., 2011].

• Face detection and pose estimation in everyday pictures (Figure 1.2).

Figure 1.2: Face detection and pose estimation example. Image taken from Zhu and Ramanan
[2012].

Some of these applications rely entirely on a supervised learning approach, the conventional
formulation of machine learning previously described. However, the available data does not
always conform to this paradigm and different formulations have been proposed to tackle the
various situations encountered in practice. The content of this work will mainly focus on the
supervised learning formulation, which will be presented in more details in the next section.
To present a broader view of machine learning, we also briefly describe a few other commonly
used machine learning paradigms.

1.1 Supervised Learning

We use X and Y to refer to the sets of all possible input and output values for a given task.
In our example above, X corresponds to the set of all possible images composed of 100× 100
grayscale pixels and Y = {’donkey’, ’monkey’}. In general X can be any set but it is commonly
restricted to X ⊆ Rk for simplifications. In this case, the elements composing the vector are
called features and X can be referred to as the feature space.
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A data set S is composed of m pairs (xi, yi), taking values in X × Y and i ∈ {1, 2, . . . ,m}.
To conform to common statistical methods requirements, it is assumed that these m obser-
vations are independent and identically distributed (i.i.d.) samples coming from an unknown
probability distribution D over X × Y. This can also be denoted by S ∼ Dm.

A learning algorithm A is simply a function that returns another function h : X 7→ Y, based
on the training set S, i.e.,

h = A(S).

The generalization performance of h depends on the quality of the learning algorithm A but it
also has a non deterministic component, i.e., S is a random variable and a different training
set S′ ∼ Dm would yield a different predictor h′ = A(S′) with at different generalization
performance. In order to quantify the generalization performance of the learned model, a
given loss function is required. This function takes the form L : Y ×Y 7→ R, which evaluates
the cost of predicting h(x) for a given x ∈ X , when its true answer is y ∈ Y. The expected
loss over the distribution D is called the true risk of h, i.e.,

RD(h) def= E
x,y∼D

L(h(x), y).

With this metric5 at hand, a machine learning task can be reduced to find, amongst a set of
candidates H, the predictor h? minimizing the true risk, i.e.,

h? def= argmin
h∈H

RD(h).

Unfortunately, D is unknown and the risk can only be evaluated on the observed samples in
S. This yields the empirical risk:

RS(h) def= 1
m

m∑
i=1
L (h (xi) , yi) .

As we will see in the next section, simply selecting the predictor minimizing RS(h) does not
necessarily give a good generalization performance and solving this problem represents one
of the main challenges of machine learning.

Historically, to simplify the analysis and to be able to exploit some mathematical properties,
it has been convenient to work within restricted frameworks. Depending on the nature of the
task to be solved, i.e., the type of Y, the following taxonomy was developed.

Classification: Y = {0, 1, 2, . . . , N} e.g., distinguishing the different symbols of the alphabet
given a handwritten version.

Binary Classification: Y = {0, 1} or Y = {−1, 1} e.g., is a mushroom poisonous or not,
given some physical characteristics?

5There exists useful metrics that cannot be written as an expected loss. In this work, we mainly focus on
the expected loss case.
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Regression: Y = R e.g., predicting the temperature given some meteorological conditions.

Structured Output: Y is any set e.g., language translation, where the output is a sentence
in the target language.

1.2 Overfitting

x

y

d = 1

polynomial fit
true function
noisy observations

x

d = 4

polynomial fit
true function
noisy observations

x

d = 14

polynomial fit
true function
noisy observations

Figure 1.3: Example of underfitting and overfitting with polynomial curves. (Inspired from a
scikit-learn tutorial.6)

The formulation of supervised learning is a generalization of the more conventional idea of
curve fitting, where a series of data points have been measured from a possibly noisy experi-
ment and we are searching for the function that best fits these observations by minimizing the
errors on the training set S. In this formulation, the input space X is of low dimensionality
— usually X ⊆ R. This offers the opportunity to visualize the shape of the learned model and
gain insight on its behavior. To this end, an example of polynomial curve fitting is depicted
in Figure 1.3 for various values of d, the degree of the polynomial.7 This example shows
that when the degree of the polynomial is low, the model does not have enough flexibility
to approximate the function. This is commonly referred to as underfitting. On the other
hand, when the degree increases too much, it is possible to exactly fit all observed points in S.
This sounds like a desirable property. However, in the rightmost image of Figure 1.3, we can
observe that most predictions on the unobserved points are highly uncorrelated from the true
underlying model. This is called overfitting and avoiding it is one of the main challenges in
machine learning and will also be the main focus of this thesis.

1.3 Validation

In the previous example, the polynomial degree d seems to play an important role on the
generalization ability of the fitted model. At first sight, finding the value of d that best fits
the training set S seems like a good idea. Unfortunately, this would systematically select

6http://www.astroml.org/sklearn_tutorial/practical.html
7The true fucnction is f(x) = 10−1/(x+0.1) and the observed points are subjected to an additive gaussian

noise with a standard deviation of 0.2.
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Figure 1.4: Comparison of validation risk RV (hγ) and training risk RS(hγ) for increasing
values of the degree d in polynomial curve fitting. In the left figure, |S| = 15 and in the right
figure, |S| = 100.

d ≥ m− 1, which allows enough flexibility to exactly fit the observed data. Instead, what is
commonly done is to hide a fraction of the data during training time and use it to evaluate
the empirical risk for various values of d. More formally, the original data set is randomly
partitioned into a training set S and a validation set V . They are both independent and
considered to be composed of i.i.d. samples coming from D.

Parameters that need to be adjusted on a validation set are called hyperparameters and some
learning algorithms can have more than one. In fact, the choice of the learning algorithm
itself can also be seen as a hyperparameter. We use γ to represent a particular configuration
of hyperparameter and Aγ to designate the corresponding learning algorithm. Then, we can
train many different configurations γ from a predefined set Γ and choose the best predictor
according the the validation set V and a given loss function L. This yields hγ = Aγ(S) and

γV
def= argmin

γ∈Γ
RV (hγ),

where we use γV to designate the best hyperparameter configuration found by the validation
set V , on Γ.

To evaluate the performance of the polynomial curve fitting in the previous example, we use
the square difference loss function, i.e.,

L(y′, y) = (y′ − y)2.

In Figure 1.4, we compare the training risk, RS(hγ), against the validation risk, RV (hγ), for
d ∈ {0, 1, 2, . . . , 20}. This clearly expresses the trade-off obtained by carefully selecting d. In
the left figure, the training is done with 15 samples, the minimum validation risk is 0.146 and
is obtained for d = 4. In the right figure, we increased the training size to 100 samples. We
observe that, in this case, we can afford a higher degree of the polynomial before observing a
significant overfitting. The minimum validation risk is then 0.048 and occurs at d = 10.
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1.4 Cross-Validation

The validation technique expressed in the previous section is useful to prevent overfitting.
However, by partitioning the data set, an important fraction of the data is missing from the
training set. This usually degrades the generalization performance of the final prediction.
To alleviate this problem, we can use most of the data for the training set and the rest
for validation. Sadly, this now causes the validation risk estimator to become noisy and less
reliable. Luckily, to overcome this, it suffices to repeat the process with a different partitioning
of the data set and average the individual validation risk to reduce its variance. This idea is
implemented by k-fold cross-validation, where the original data set is separated in k subsets
which are iteratively used as the validation set. Namely, let {V1, V2, . . . , Vk} be a partition of
S, and let hγ,j def= Aγ (S \ Vj). Then, the cross-validation risk is

RCV(γ) def= 1
k

k∑
j=1

RVj (hγ,j).

This gives a metric for selecting γ,

γCV
def= argmin

γ∈Γ
RCV(γ).

The final model is then retrained on the full data set S using γCV, i.e.,

hγCV
def= AγCV(S).

This then raises a subtle question: Since we retrain on the full data set using the selected
γ, why is it important to validate with as much training data as possible? It turns out
that the appropriate value of γ depends on m, the size of the training set. For example, in
the polynomial curve fitting example, if we have more training data, we can afford to use a
higher degree d before being plagued by the overfitting problem. Therefore, with a higher k,
|S \ Vj | ≈ |S| and the influence of the hyperparameter configuration γ has less chance to be
biased but it comes with a greater computational cost. Common cases are k = 5 or k = 10
and the special case where k = m is called leave-one-out cross-validation.

1.5 Other Formulations of Machine Learning

“Big data is like teenage sex: everyone talks about it, nobody really knows how to do
it, everyone thinks everyone else is doing it, so everyone claims they are doing it...”

– Dan Ariely, January 6, 2013

One of the most straightforward ways to increase the generalization performance is to get more
data. We are in the era of big data, where more and more users are working or playing through
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online services and everything is logged. The amount of sensors surrounding us is increasing
everyday and their price is getting lower. Hard drives are filling up with (hopefully) valuable
information. Sadly, most of this data does not fit in the supervised learning framework or at
least, not directly for the task we need to solve. However, in many cases, this data contains
patterns that could help solving other tasks with less data. This gave rise to Inductive
Transfer Learning, which aims at transferring information from source tasks to a target
task. Inductive transfer learning does not have a precise framework. Instead it describes the
generic idea of reusing information coming from other tasks to simplify the learning of the
target task. To address specific problems, the following sub-domains have been developed8:

Multitask Learning: When more than one task shares a common structure, it can be ex-
ploited by simultaneously solving all of them. For example, spam filtering can be per-
sonalized by considering each email account as a different task. While the training set
of each of these individual tasks is too small to obtain a reliable spam filter, considering
a common representation and solving them simultaneously makes this personalization
possible [Weinberger et al., 2009].

Domain Adaptation: This approach assumes that the source distribution Dsource over X ×
Y is similar9 to the target distribution Dtarget, but not identical. It also assumes that
the information in the source data set is abundant enough to learn a reliable predictor.
Then, this predictor is adapted to the target task using the information available in
the corresponding data set. For example, Amazon’s reviews on books consists in a
substantial data set and we would like to use it to enhance the predictions on DVD
reviews [Chen et al., 2012].

Other approaches use a single task but work around the scarcity of the label. For example,
semi-supervised learning uses the idea that unlabeled samples are abundant but labeling
them is expensive. Thus, the usual training set S is accompanied by an unlabeled set U
sampled from the marginal distribution p(x) = ∑

y∈Y D(x, y). This unlabeled data set can
then be used to learn a similarity function based on the density p(x) [Belkin et al., 2006].
Active learning offers an extension to this idea where it is possible to iteratively query
the label for specific x. By carefully choosing x, it is possible to significantly accelerate
the learning [Tong and Koller, 2002]. Finally, transductive learning is similar to semi-
supervised learning in the sense that it is accompanied by an unlabeled set U . However,
the goal is solely to predict the labels on the set U instead of inducing a function. This
simplification allows an increase in generalization performance in certain cases [Joachims,
1999].

8There is not a common agreement on the exact definition of these terms and some authors describe domain
adaptation and inductive transfer learning as two distinct frameworks.

9The precise definition of similarity depends on the author.
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1.6 Thesis Outline

In the next chapter, we show how the Bayesian modeling of machine learning offers a simple
solution to the overfitting problem. We also expose the basic elements of the PAC-Bayes
theory and we show that it provides the same solution to the overfitting problem.

Then, the rest of the thesis presents three of my main publications in chronological order.
Odd chapters serve as a presentation while even chapters correspond to a formatted version
of the publication. Their notation was adapted to avoid important clash with the current
notation. An early version of two of these works were also published in workshops and are
provided in Appendix A and Appendix B.

The first publication presents the Poisson binomial test, a Bayesian statistical significance test
designed to compare the generalization performance of two learning algorithms (Chapter 4).
The second publication focuses on enhancing the generalization performance of the validation
process. It does so by integrating out the uncertainty arising when selecting a single predictor
based on a finite validation set (Chapter 6). Finally, the third work combines this validation
enhancement with a new optimization technique used to accelerate the search of the minimal
validation risk (Chapter 8).
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Chapter 2

Priors and Model Averaging

As seen previously, simply selecting the model that best fits the observed data may yield the
problem of overfitting. This usually gives high accuracy for predictions made on observed
data. However, the final predictor is deprived of any guarantee on the predictions made
for unseen data. At first sight, this looks like a degenerated problem, where learning from
examples would be a hype with no real solution. Fortunately, the machine learning community
proposed several learning theories to address this problem. These theories are often based on
different approaches and propose different solutions. Interestingly, there are two key elements
that are at the core of most of these approaches:

• Prior, also known as “function class complexity”,

• Model Averaging, a concept that is often implicit or ignored.

The first element aims at limiting the complexity of the set of candidate models. The second
element integrates out the uncertainty about which model is the true underlying model.

In this chapter, we offer an overview of Bayesian model averaging as well as an overview of the
PAC-Bayesian theory. While being based on fundamentally different axioms, we show that
both approaches agree on the final solution. This outlines the fact that using an appropriate
prior and performing model averaging are the two key aspects for a good generalization
performance. This will serve as a foundation for the rest of this thesis.

2.1 Bayesian Model Averaging

The general idea behind Bayesian modelization of machine learning is that with a finite
amount of observations, we cannot find with certainty the true model at the origin of the ob-
servations in S. However, it is possible to obtain a probability distribution over all considered
models θ ∈ Θ that are likely to be the one. Then, when a prediction needs to be made on an
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unseen test point, all models are queried to provide a probability distribution over possible
answers.

“Overfitting does not apply to fully Bayesian methods since they don’t involve any
fitting.”

– Zoubin Ghahramani, MLSS 2012

Probability theory offers two simple rules to transform joint probability distributions.

p(a) =
∑
b

p(a, b) (2.1)

p(a, b) = p(a|b)p(b) (2.2)

= p(b|a)p(a).

The first rule is called marginalization and the second one factorization. Note that in these
equations, it is implicit that a and b are realizations of the random variables A and B and that
the summation goes for all possible values of b. When b is a continuous variable, it should be
integrated. In order to keep a light notation, we leave these details implicit whenever there
is no ambiguity. We also note that we can always condition on an extra variable c without
affecting the above equalities, i.e., p(a|c) = ∑

b p(a, b|c) and p(a, b|c) = p(a|b, c)p(b|c) =
p(b|a, c)p(a|c). In the case where a and b are independent, i.e., the knowledge of b does not
influence the probability of a, we can write p(a|b) = p(a|b) = p(a), where we use the gray
notation when we want to highlight the fact that this information is available but does not
influence the probability distribution.

Interestingly, these two simple rules are sufficient to write a complete probabilistic modeliza-
tion of machine learning. As a first step, we obtain Bayes theorem by simply considering the
two different ways of factorizing a joint distribution (Equation 2.2) and rearranging the terms

p(a|b) = p(b|a)p(a)
p(b) . (2.3)

There is nothing Bayesian about this equation until we attribute meanings to the different
terms that compose it. To do so, let’s consider an example related to machine learning. Let
S be the training data set and θ ∈ Θ the collection of parameters that compose the model,
where Θ corresponds to the family of possible models. This gives

p(θ|S) = p(S|θ)p(θ)
p(S) ,

where we attribute the following meanings to each term:

Prior: p(θ) represents the probability that θ corresponds to the true model before any ob-
servation is made. At this point, we usually don’t have much information about which
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one is the true model and this should be reflected in our choice of p(θ), i.e., it should
have a high entropy.

Posterior: p(θ|S) is still a probability distribution over Θ. However, it is now conditioned
on the observation of S. In other words, this corresponds to the probability that model
θ is at the origin of the observations in S.

Likelihood: p(S|θ) corresponds to the probability of observing the data set S supposing that
it was generated by model θ. Using the i.i.d. assumption, it can be factorized as follows
p(S|θ) = ∏m

i=1 p(xi, yi|θ).

Marginal Likelihood: p(S) = ∑
θ∈Θ p(S|θ)p(θ) can be seen as a simple normalization factor

since it does not depend on θ. Later, we will see that this term can measure the
complexity of the current prior and can serve as a model selection tool.

Based on the attributed meaning, we first have to choose a set of hypothetic models θ ∈ Θ
defining a probability distribution p(x, y|θ) over X×Y. Then, after specifying a prior p(θ) over
Θ and observing S, we obtain a posterior distribution p(θ|S). Bayes posterior is in general
consistent [Ibragimov and Has’minskii, 1981, Chapter 1], that is, it almost surely converges
to the true model θtrue as m → ∞, where p(x, y|θtrue) = D(x, y). However, this may not
always be the case, e.g., p(θtrue) = 0 ⇒ p(θtrue|S) = 0. This situation is referred to as a
mis-specified prior.

2.1.1 Discriminative Model

“One should solve the [classification] problem directly and never solve a more general
problem as an intermediate step.”

– Vladimir Vapnik, 1998

We have to keep in mind that the goal of supervised learning is not to find the true distribution
D, but to perform predictions for a new point x ∈ X . Namely, we are searching for the
distribution p(y|x, θ), and not p(y, x|θ). Using the i.i.d. assumption and the factorization
rule, the likelihood can be written

p(S|θ) =
m∏
i=1

p(xi, yi|θ)

=
m∏
i=1

p(yi|xi, θ)
m∏
i=1

p(xi|θ).
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We note that p(x) is not explicitly modeled1 and it does not depend on θ. This allows us to
write the following, using Bayes’ theorem

p(θ|S) = p(S|θ)p(θ)∑
θ∈Θ p(S|θ)p(θ)

=
∏m
i=1 p(xi)∏m
i=1 p(xi)

∏m
i=1 p(yi|xi, θ)p(θ)∑

θ∈Θ
∏m
i=1 p(yi|xi, θ)p(θ)

.

Since p(x) does not depend on θ, it is possible to move it outside of the summation and cancel it
out with its numerator instance. Thus, we never have to explicitly model p(x). This approach
is called the discriminative model and it corresponds to an important simplification since
p(x) usually represents a complex probability distribution, e.g., the probability of observing
any images composed of 100 × 100 pixels. This approach contrasts with the generative
model where the joint distribution p(x, y|θ) is modeled. This can be useful if our task
requires us to generate samples from p(x). Otherwise, it is often considered wise to choose
the discriminative approach [Ng and Jordan, 2001] and this will be the focus for the rest of
this work.

To simplify equations, we use Sx def= {xi}mi=1, Sy
def= {yi}mi=1 and S = (Sx, Sy). This allows

us to write p(Sy|Sx, θ) = ∏m
i=1 p(yi|xi, θ) and the the posterior for the discriminative model

becomes
p(θ|S) = p(Sy|Sx, θ)p(θ)∑

θ∈Θ p(Sy|Sx, θ)p(θ)
.

Also, since the marginal likelihood p(Sy|Sx) = ∑
θ∈Θ p(Sy|Sx, θ)p(θ) does not depend on θ (it

has been integrated out), we can write the posterior as follows

p(θ|S) ∝ p(Sy|Sx, θ)p(θ).

To model p(y|x, θ), it is common to consider a deterministic function h ∈ H with an output
noise model η. Hence, we have θ = (h, η) and p(y|x, θ) = p(y|x, h, η). It is also possible to
consider an input noise model, but this is less common.

2.1.2 Model Averaging

The Bayes posterior gives us a probability over which model is likely to be the true one.
However, with a finite sample size, we cannot identify it. How do we choose the right one
then? Some authors simply select the most probable one, also known as maximum a posteriori
(MAP). Unfortunately, this is equivalent to choosing the model that best fits the observed
points and, as we have already seen, it can suffer from important overfitting. A solution
to this problem is then to consider the answer of each of these models and to weigh their
predictions according to the posterior distribution. Namely, from the probabilistic rules 2.2

1We could write p(x|φ) instead, where φ ∈ Φ represents parameters that do not need to be inferred.
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and 2.1, we have

p(y|x, S) =
∑
θ∈Θ

p(y|x, S, θ)p(θ|x, S)

=
∑
θ∈Θ

p(y|x, θ)p(θ|S), (2.4)

In this operation, we have integrated out the model θ. Thus, the final distribution p(y|x, S)
does not depend on θ and we have fully taken into account the uncertainty about which θ

was the true model. We refer to this approach as model averaging and we claim that this
corresponds to the overfitting’s nemesis.

2.1.3 Example with Linear Regression

To avoid getting lost in generic equations, we take a pause to address linear regression with
a Bayesian approach. This will give us a concrete example for the rest of this section. This
learning algorithm is derived in many different textbooks, but here, we present an adapted
version from Rasmussen and Williams [2006, Chapter 2.1].

Figure 2.1: One dimensional linear regression example with Gaussian noises. Image taken
from Wikipedia.

Linear regression addresses the specific machine learning setup where X = Rd, Y = R and
H is the set of d-dimensional linear functions (See Figure 2.1). To favor the usage of the
linear algebra notation, in this section x ∈ Rd is a vector, X def= (x1, x2, . . . , xm) ∈ Rd×m is a
matrix and y def= (y1, y2, . . . , ym)T ∈ Rm is a vector. Since H is a set of linear functions, the
parameters of the model, w ∈ Rd, are also a vector and each hypothesis has the form2

h(x) = wTx.

To properly define the likelihood function p(y|x,w), we need a noise model. Any noise model
is valid, but it turns out that an additive Gaussian noise yields interesting mathematical

2As is commonly done, we omit the extra parameter for the bias as it can be included in w by adding an
extra dimension to x and setting its value to 1.
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properties and is appropriate for many real world problems. Thus, we have y = h(x) + ε,
where ε ∼ N

(
0, σ2), which gives

p(y|x,w, σ) = N
(
y
∣∣∣ wTx, σ2

)
.

The parameters of the model are θ = (w, σ), but for simplicity, we will consider σ as a known
parameter for now. Hence, we use θ = w. With this at hand, we can define the likelihood as
follows

p(y|X,w, σ) =
m∏
i=1

p(yi|xi,w, σ)

=
m∏
i=1

1√
2πσ

exp
(
−(yi − xTi w)2

2σ2

)

= 1
(2πσ2)m/2

exp
(
− 1

2σ2 (y−XTw)T (y−XTw)
)

= N
(
y
∣∣∣ XTw, σ2I

)
,

where I is the m ×m identity matrix. We use the prior p(w) = N (w | 0,Σp) (this choice
will be explained in Section 2.1.6). Since this prior is parametrized by the covariance matrix
Σp, the prior p(w) is written p(w|Σp). Using A def= σ−2XXT + Σ−1

p and w̄ def= σ−2A−1Xy, we
can write the posterior as follows

p(w|X,y, σ,Σp) ∝ p(y|X,w, σ)p(w|Σp)

∝ exp
(
− 1

2σ2 (y−XTw)T (y−XTw)
)

exp
(
−1

2wTΣ−1
p w

)
∝ exp

(
−1

2(w− w̄)TA(w− w̄)
)
,

where the last equation is obtained by “completing the square” and, by its form, we identify
that it corresponds to a normal distribution. This saves us from having to explicitly calculate
the normalization factor and we obtain

p(w|X,y, σ,Σp) = N
(
w
∣∣∣ w̄, A−1

)
.

Finally, by using the model averaging principle presented in Section 2.1.2, we obtain

p(y|x,X,y) =
∫

w∈Rd
p(y|x,w)p(w|X,y, σ,Σp)dw

=
∫

w∈Rd
N
(
y
∣∣∣ wTx, σ2

)
N
(
w
∣∣∣ w̄, A−1

)
dw

= N
(
y

∣∣∣∣ 1
σ2x

TA−1Xy, xTA−1x

)
.

The simplicity of this result is impressive. This is a consequence of choosing a linear function
space with an additive Gaussian noise model and a normally distributed prior. In general,
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model averaging does not yield a closed-form solution and we need to rely on approximation
methods. While linear regression is limited to very specific tasks, by projecting x on a higher
dimensional space (possibly infinite) with a mapping function φ, we gain access to a function
space more flexible than linear functions. This gives rise to the Gaussian Process algorithm
[Rasmussen and Williams, 2006, Chapter 2], a very flexible algorithm that is appropriate for
a wide range of tasks. The choice of the mapping function φ can be seen as being part of the
prior, but we will see in Section 2.1.6 that this parameter can also be marginalized. For now,
we come back to the Bayesian modelization of machine learning.

2.1.4 Optimal Bayes Decision

From Bayes’ theorem and the model averaging principle, we have obtained the distribution
p(y|x, S). We are close to the goal; but to fulfill the requirements of supervised learning, we
still have to commit to a particular answer for a given x. This can only be achieved when
the loss function L : Y ×Y 7→ R is specified. With it, we can select the answer with the least
consequence according to p(y|x, S), this gives the optimal Bayes predictor:

Bopt(x) def= argmin
y′∈Y

∑
y∈Y

p(y|x, S)L(y′, y). (2.5)

For a given loss, this equation can be simplified [Robert, 2001, Chapter 2].

zero-one loss: L(y′, y) = I[y′ 6= y], where I corresponds to the indicator function. In this
case, the most probable answer is the one satisfying Equation 2.5, i.e.,

Bopt(x) = argmax
y∈Y

p(y|x, S).

quadratic difference loss: L(y′, y) = (y′ − y)2. In this case, the expected value is the
appropriate answer, i.e.,

Bopt(x) =
∑
y∈Y

yp(y|x, S).

absolute difference loss: L(y′, y) = |y′ − y|. In this case, the appropriate answer is the
median, i.e., Bopt(x) = τ such that

Pr(y ≤ τ |x, S) = Pr(y ≥ τ |x, S).

Since the quadratic difference loss reduces to the expected value of p(y|x, S), this offers an
important simplification.

Bopt(x) =
∑
y∈Y

yp(y|x, S)

=
∑
θ∈Θ

p(θ|S)

∑
y∈Y

yp(y|x, θ)

 ,
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which corresponds to the model averaging of deterministic predictors. When using linear
models with additive noise such as described in Section 2.1.3, this simplifies further more

Bopt(x) =
∫

w∈Rd
p(w|X,y, σ,Σp)

∫
y∈R

y p(y|x,w, σ) dy dw

=
∫

w∈Rd
p(w|X,y, σ,Σp) xTw dw

= xT
∫

w∈Rd
wN

(
w
∣∣∣ w̄, A−1

)
dw

= xT w̄,

where w̄ def= σ−2A−1Xy. When limiting Σp to be of the form σpI, we have3

w̄ =
(
XXT + 1

σp
I

)−1

Xy,

which corresponds to the ridge regression algorithm [Rasmussen and Williams, 2006, Chapter
6.2] also known as Tikhonov regularization. We note however that, in this particular case,
argmax

w∈Rd
p(w|X,y, σ,Σp) = w̄. Hence, the maximum a posteriori model coincides with the

behavior of the full model averaging.

2.1.5 Practical Implementation

At this point, we now have a complete probabilistic solution to the supervised learning frame-
work. It directly followed from the two probability rules 2.2 and 2.1 and the i.i.d. assumption4.
To highlight the simplicity of this approach, we quickly review the 4 steps required to achieve
the final prediction:

1. Choose a prior p(θ) over a family of models able to express p(y|x, θ).

2. Compute the posterior distribution

p(θ|S) ∝
m∏
i=1

p(yi|xi, θ)p(θ).

3. Perform model averaging

p(y|x, S) =
∑
θ∈Θ

p(y|x, θ)p(θ|S).

4. Compute the optimal decision

Bopt(x) def= argmin
y′∈Y

∑
y∈Y

p(y|x, S)L(y′, y).

3Note that it does not depend on σ.
4Note that the i.i.d. assumption is not necessary. However, it greatly simplifies the expression of the

likelihood.
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There is no approximation in these equations, but we don’t have an algorithm yet. The task
now resides in choosing an appropriate prior and finding a way to perform efficient model
averaging, hence the title of this chapter. The difficulty is that, for most priors of interest, Θ is
an infinite uncountable set, causing exact model averaging to be computationally intractable.
As we have seen in Section 2.1.3, some priors offer a closed form solution for model averaging,
but in general, we have to rely on approximations. To this end, we present a quick overview
of a few common approximation methods available in the Bayesian literature.

Maximum A Posteriori: As seen previously, the MAP approach simply chooses the most
probable model. This can be seen as a form of approximation and is often used in practice.
However, it completely ignores the amount of uncertainty we have about which model is good.
Even though it is often used in practice, this approach does not always have a generalization
guarantee.

Sampling From The Posterior: In order to approximate the infinite sum (or integral) of
Equation 2.4, it is possible to use a Monte Carlo method. This consists in sampling N times
θi ∼ p(θ|S) and yi ∼ p(y|x, θi). Then, the collection {yi}N1 is used to approximate p(y|x, S)
or to directly address the optimal Bayes decision (Equation 2.5), e.g., in the case of the
quadratic difference loss, the answer is Bopt(x) = 1

N

∑N
i=1 yi. Sadly, it is generally not possible

to directly sample from p(θ|S). To tackle this, techniques such as Markov Chain Monte Carlo
(MCMC) can be used [Andrieu et al., 2003]. This yields a highly flexible algorithm and a
good approximation when N is sufficiently large. The drawback is that MCMC algorithms
need to converge before generating reliable samples and the convergence time is usually long
and unknown.

Variational Bayes: An efficient approach is to search for the distribution q(θ) amongst a
set of distribution Q that best approximate the posterior p(θ|S) according to the Kullback-
Leibler divergence5 between q(θ) and p(θ|S). The set Q is chosen such that model averaging
becomes computationally tractable when p(θ|S) is approximated by q(θ). For more details,
Fox and Roberts [2012] offer a great introduction.

2.1.6 Choosing the Prior

Now that we have practical solutions to perform model averaging, we are left with the task
of selecting an appropriate prior p(θ). This probability distribution should reflect the prior
knowledge we have about this task. If we have none, then this distribution should be as vague
as possible. What is paradoxical at this point is that machine learning aims at developing a
generic learning algorithm able to tackle a wide variety of tasks, but Bayes’ theorem suggests
that choosing an appropriate prior for the given task would enhance the performance of the

5Other dissimilarity functions can be used
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final predictor. For this reason, many learning algorithms are based on the following vague
assumption. Let (x, y) ∼ D and (x′, y′) ∼ D then if x is similar to x′, y is also similar to y′.
By parameterizing the notion of similarity, we can get both benefits i.e, a flexible algorithm
that can work for a wide range of tasks and the opportunity to specialize the algorithm for a
given task. This notion is used in a wide range of popular learning algorithms and the rest
of this section describes how to handle these prior parameters.

Approaches such as Artificial Neural Networks provide more flexibility on the prior by letting
the choice of the architecture an open parameter. By doing so, a skilled engineer can commu-
nicate important prior information to the learning algorithm and can lead to an important
increase in generalization performances. Also, the usage of deeper architectures has proven
to be more efficient on many tasks, yielding a new branch of machine learning called deep
learning [Bengio, 2009].

Marginal Likelihood

An important aspect of the prior is the notion of complexity, which is often related to the
famous Ockham’s razor. When the prior is highly flexible and distributes its probability
mass amongst a wide range of models, then the good models will have really small mass
and the learning will require more data. However, it is hard to know a priori which level of
complexity is appropriate for the given task. For this reason, it is common to parametrize
the prior and select the one that offers the best trade-off between flexibility and simplicity.
To represent the parameters of the prior, we use p(θ|γ), where γ is any configuration of prior
parameters taking values in a predefined set Γ. We note that these prior parameters are
analogous to hyperparameters and could be selected through cross-validation (Section 1.3),
but the Bayesian approach offers an interesting tool to achieve a similar result. This tool is
nothing more than the marginal likelihood defined at the beginning of this section. Now that
the prior is parametrized, the marginal likelihood is written as follows

p(S|γ) =
∑
θ∈Θ

p(S|θ)p(θ|γ),

or in the case of discriminative modeling

p(Sy|Sx, γ) =
∑
θ∈Θ

p(Sy|Sx, θ)p(θ|γ).

In other words, this quantity describes the probability of observing S amongst any other data
set of the same size, given that we chose the prior related to γ. A toy representation of this
idea is presented in Figure 2.2. It shows that when the prior is highly flexible it will be suited
for a wide range of data sets, but p(S|γ) is likely to be low. On the other extreme, if we
choose a really specific prior, it will be highly suited for a restricted set of data sets. Finally,
somewhere in between, there exists an appropriate choice that performs a good trade-off and
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this choice is the one maximizing the marginal likelihood (MML), i.e.,

γMML = argmax
γ∈Γ

p(S|γ)

too simple

too complex

"just right"

Figure 2.2: Toy representation of the marginal likelihood. Image adapted from Ghahramani
[2013].

In the case of linear regression presented in Section 2.1.3, the marginal likelihood can also be
expressed in a closed-form solution [Rasmussen and Williams, 2006, Chapter 2.2]

p(y|X,σ,Σp) =
∫

w∈Rd
p(y|X,w, σ)p(w|Σp)dw

= N
(
y
∣∣∣ 0, XTΣpX + σ2I

)
.

Then, by differentiating the function p(y|X,σ,Σp) with respect to σ and Σp, we can use
gradient ascent to find the most appropriate parameters, which is by far more computationally
efficient than cross-validation.

Hierarchical Bayes

Another way to deal with prior parameters is to marginalize them like other parameters by
performing model averaging with a posterior p(γ|S). In order to do this, we need to specify
a hyper-prior6 p(γ) over the set of prior parameters Γ. This gives the following posterior
distribution

p(γ|S) ∝ p(S|γ)p(γ).

Then, it can be marginalized

p(y|x, S) =
∑
γ∈Γ

p(y|x, S, γ)p(γ|S),

6It seems like we are just shoveling the problem further by using a hyper-prior, but this hyper-prior has
less influence on the final posterior. If the choice of this hyper-prior still has too much influence on the end
result, we can still use a hyper-hyper-prior.
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where p(y|x, S, γ) is the previously obtained result of p(y|x, S) that is now conditioned on γ
(refer to Section 2.1.2).

This approach also sheds light on the maximum marginal likelihood approach. If we consider
an uniform prior over Γ, we have p(γ|S) ∝ p(S|γ) and

argmax
γ∈Γ

p(S|γ) = argmax
γ∈Γ

p(γ|S).

Hence, maximum marginal likelihood is equivalent to maximum a posteriori of γ under a
uniform prior. This means that marginal likelihood is just an approximation of hierarchical
Bayes. On the other hand, hierarchical Bayes requires an extra marginalization step which
may be time consuming and the overfitting incurred when choosing the maximum a posteriori
of a few prior parameters may have a small impact on the end result.

Mis-specification Caveat

Hierarchical Bayes and marginal likelihood offer very elegant solutions to the model selection
problem and they draw an important shadow over cross-validation. However, we still need
to be careful with mis-specification issues. This arises when the true model is not considered
by the prior, i.e., p(θtrue) = 0. In this case, the posterior cannot converge on the true model
and this can be detrimental to the generalization performance of the optimal Bayes predictor.
In Grünwald and Langford [2007], using a model of the form p(y|x, θ) = p(y|h(x), η) (refer
to Section 2.1.1), they showed that the true risk of the optimal Bayes predictor may diverge
significantly from minh∈HRD(h), even when m → ∞. Hence, a final validation or cross-
validation step should always be performed on a test set to ensure the good behavior of the
learned model.

2.2 The PAC-Bayesian Theory

The PAC-Bayesian theory, despite its name, takes a radically different approach at preventing
overfitting. Instead of directly modeling the task to solve, it seeks to bound the true risk of
a predictor. Then, by minimizing the bound, we can find the predictor having the best
generalization guarantee.

Our goal in this section is to outline some of the main results of the PAC-Bayesian theory
to show how it shares some important links with the Bayesian modeling of machine learning.
The reader that is interested in this subject should read Lacasse et al. [2006], Germain et al.
[2009] and Germain et al. [2011]. Also, Audibert and Bousquet [2007] offers an overview of
various learning theory bounds.

While the PAC-Bayesian theory has been generalized to different machine learning setups
[Zhang, 2006, Germain et al., 2006], the binary classification paradigm has been widely
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explored and offers some simplifications. Hence, in this section, we restrict ourselves to
Y = {−1, 1} and L(y, y′) = I[y 6= y′], the zero-one loss.

Prior and Posterior

Interestingly, this theory also includes the notion of prior and posterior probabilities over the
set H. Since they are not the outcome of Bayes’ rule, we use P and Q to distinguish them
from their Bayesian analog p(h) and p(h|S) respectively. Note that P is a prior distribution
and must obey the same rule as p(h), i.e., it must be defined before observing any sample in
S (refer to the proof of Corollary 2.2 of Germain et al. [2009]).

Gibbs Classifier vs Bayes’ Classifier

Instead of obtaining bounds on the risk of the deterministic predictors h ∈ H, the PAC-
Bayesian approach produces bounds on a stochastic predictor GQ called theGibbs classifier,
which yields predictions according to the following probability distribution

GQ(y|x) def=
∑
h∈H

Q(h) I[h(x) = y].

In this setup, we have I[h(x)=y] = p(y|x, h). Hence, we can also write

GQ(y|x) =
∑
h∈H

p(h|Q)p(y|x, h)

= p(y|x,Q).

In Section 2.2, we will see that, for a given S, we obtain Q?, the optimal posterior distribution.
Hence, the Gibbs classifier, p(y|x,Q?), is the PAC-Bayesian analog of p(y|x, S), the probability
of y after model averaging (Section 2.1.2). We note that the Gibbs classifier differs from the
Bayes classifier BQ, where

BQ(x) def= argmax
y∈Y

GQ(y|x).

This corresponds to the optimal Bayes prediction when using the zero-one loss (Section 2.1.4).
While different, these two types of classifiers still behave similarly. For a given x, BQ(x) will
perform a mistake when at least half of the probability mass of Q is erroneous. It follows that
the error rate of GQ is at least half of the error rate of BQ. Hence, RD(BQ) ≤ 2RD(GQ). This
allows us to directly transform an upper bound on RD(GQ) to an upper bound on RD(BQ).
While this adds a factor of two, the risk of the Bayes classifier is usually smaller [Lacasse
et al., 2006] and the factor of two can sometimes be reduced to 1 + ε, where 0 < ε � 1
[Langford and Shawe-Taylor, 2002].
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Catoni’s Bound

With these definitions at hand, we can state Catoni’s bound [Catoni, 2007], one of the great
results of this field. The same theorem is also expressed with great elegance in corollary 2.2
of Germain et al. [2009].

Theorem 2.2.1. For any distribution D, any set H of classifiers, any distribution P of
support H, any δ ∈ (0, 1], and any positive real number C, the following inequality holds
simultaneously, with probability 1− δ, for all distribution Q on H.

RD(GQ) ≤ FC
(
CRS(GQ) + 1

m

(
KL(Q||P ) + ln 1

δ

))
,

where KL(Q||P ) = E
h∼Q

ln Q(h)
P (h) and FC(x) = 1−e−x

1−e−C .

Before explaining this result, we first perform a few common transformations (which will cost
the bound to be looser). First, we use the fact that RD(BQ) ≤ 2RD(GQ) to obtain a bound
on Bayes’ classifier instead. We also fix δ to 0.05. This means that this probabilistic bound
holds with probability 0.95, and ln(1/δ) . 3. Also, by noting that 1 − e−x ≤ x, we have
FC(x) ≤ x/(1− e−C). This gives the following probabilistic bound

RD(BQ) ≤ 2
1−e−C

(
CRS(GQ) + 1

m
KL(Q||P ) + 3

m

)
,

where we have grayed out the less important terms.

The term KL(Q||P ) represents the Kullback-Leibler divergence between Q and P . That is,
when Q diverges significantly from P , this term becomes more important. In other words,
it acts as a regularizer and C is a hyperparameter governing the trade-off between this term
and RS(GQ), the empirical risk of the Gibbs classifier. The Kullback-Leibler can be seen as
a measure of complexity of Q with respect to P . Since it is preceded by 1

m , as we get more
data, we can afford a more complex posterior Q.

One important particularity of this bound is that it holds simultaneously for any posterior
Q (which is not the case of the fixed parameter C). This allows us to find Q?, the posterior
that minimizes this bound. Since FC is a monotonic increasing function, we have

Q?(h) = argmin
Q

CRS(GQ) + 1
m

KL(Q||P )

s.t.
∑
h∈H

Q(h) = 1

By setting the derivative to zero and using Lagrange’s multipliers to respect the equality
constraint, we find (refer to Lemma 2.1 of Germain et al. [2009])

Q?(h) ∝ P (h)e−CmRS(h). (2.6)
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This probability distribution attributes more mass to the predictors having low empirical risk
RS(h) while taking into account the prior’s information. As m or C increase, the distribution
becomes sharper around the predictor minimizing the empirical risk and the prior becomes
less important. When m → ∞ it becomes a point mass on the one minimizing the true risk
(if unique).

Since other Q would be suboptimal, this strongly suggests that model averaging is the best
approach to appropriately bound the true risk. To see what happens when we choose a single
predictor, we use the linear regression example presented in Section 2.1.3. For simplicity,
we use isotropic normal distributions7 for the prior and posterior, i.e., P ∼ N (µµµp, σ2

pI) and
Q ∼ N (µµµq, σ2

qI). Then, the Kullback-Leibler divergence takes the following form [Rasmussen
and Williams, 2006, Appendix A.5]

KL(Q||P ) = 1
2σ2

p

‖µµµp −µµµq‖22 + d log σp
σq

+ d

2

(
σ2
q

σ2
p

− 1
)
.

From this, we see that as σq → 0, KL(Q||P )→∞. In other words, if the posterior distribution
is composed of a single predictor, the bound diverges to infinity and gives no guarantee on
RD(BQ). This again suggests that performing model averaging is the key to avoid overfitting.

To sum up, this bound states that there are three important elements to obtain a good
generalization performance:

• Use an appropriate prior.

• Obtain as much data as possible.

• Perform model averaging.

The Missing Noise Model

We saw that Bayesian modeling of machine learning and the PAC-Bayesian theory have several
elements in common. Yet, the PAC-Bayesian approach directly works with deterministic
predictors and does not explicitly propose a noise model. It instead uses the loss function as
a measure of dissimilarity between yi and h(xi).

Interestingly, we can show that L is at the heart of an implicit noise model, where C governs
the amount of noise. To achieve this, we use the following noise model

p(y|x, h, C) ∝ e−CL(y,h(x)). (2.7)

7This is also being used in Langford and Shawe-Taylor [2002].
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Assuming C is given and using the prior p(h), the posterior becomes

p(h|S,C) ∝ p(h)
m∏
i=1

p(yi|xi, h, C)

∝ p(h)
m∏
i=1

e−CL(yi,h(xi))

= p(h)e−CmRS(h),

which is identical to the PAC-Bayesian posterior obtained by minimizing Catoni’s bound.

For the case of binary classification8 with the zero-one loss, this corresponds to a Bernoulli
noise model, where with probability ζ, the answer h(x) is inverted. Using the shorthand
notation ky def= I[y 6= h(x)] , we have

p(y|x, h, ζ) = ζky(1− ζ)1−ky

= elog(ζky (1−ζ)(1−ky))

= eky log(ζ)+(1−ky) log(1−ζ)

= e
ky log

(
ζ

1−ζ

)
elog(1−ζ)

∝ eI[y 6=h(x)] log
(

ζ
1−ζ

)
.

Hence, by using
C = log 1− ζ

ζ
, (2.8)

we recover the noise model of Equation 2.7. In other words, the parameter C introduced in
Theorem 2.2.1 corresponds to a reparametrization of the amount of label noise.

8This can be generalized to multi-class classification.
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Chapter 3

First Paper Presentation

3.1 Details

Bayesian comparison of machine learning algorithms on single and multiple data
sets
Alexandre Lacoste, François Laviolette, and Mario Marchand
In International Conference on Artificial Intelligence and Statistics, 2012.

3.2 Context

As we have seen, in Section 1.3 and Section 2.1.6, after training a predictor h = A(S),
we should always perform a final evaluation of the generalization performance on a test set
T ∼ Dn. This allows us to get an unbiased estimate of RD(h) using RT (h). This measure
can then be used to compare the result of different learning algorithms on the same data set.
However, this should be used with caution. Given two learning algorithms A and B and their
resulting predictor h def= A(S) and g def= B(S), it is common to imply:

“If RT (h) < RT (g) then h is better than g”.

Since T is a random variable, the outcome may differ by using a different sample T ′ ∼ Dn. In
some cases, |T | may be sufficiently large to support this claim, but it is common malpractice
to go further and imply:

“If RT (h) < RT (g) then A is better than B”.

Since a learning algorithm is meant to work across different tasks, testing it on a single task is
far from being sufficient. Also, many learning algorithms are non-deterministic, i.e., repeating
the training phase on the same training set, may yield a different predictor. This problem
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can even go further. A research scientist will perform several experimentations to explore
various techniques. When an experiment provides a negative result, he usually tries another
approach until he obtains a good result. In its extreme form, this process is analogous to
rolling a die until the desired value is obtained, which has no scientific value and can cause
an important bias on the results published in the literature.

3.3 Contributions

The uncertainty of this evaluation process must be dealt with to provide more reproducible
experiments and help the machine learning field progress at a reliable pace. To this end,
the statistical literature already offers a few statistical significance tests developed for various
purposes. Demšar [2006b] performs a survey of these methods and concludes on which one
is safe to use for the machine learning community. However, no work has been done on
developing a test dedicated to the evaluation of learning algorithms.

In this work, we propose a clear definition of what is meant to have a learning algorithm that is
better than another one. The estimation of this answer uses a collection of training set Si and
testing set Ti coming from N different tasks. Based on this, we provide a closed-form solution
for computing Pr

(
A is better than B

∣∣∣ {Si, Ti}Ni=1

)
. This model fully integrates out all the

uncertainty in the evaluation of learning algorithms by building upon Pr (RD(h) < RD(g)|T ).
Using this probabilistic answer, we can choose a threshold τ (e.g., τ = 0.9) to decide which
results are significant enough. By doing so, experiments that are based on insufficient data will
be rejected as well as experiments comparing algorithms that are almost equivalent. Finally,
by using this dedicated test, we are able to outperform the reliability of the tests proposed
by Demšar [2006b].

Obviously, we cannot directly address the bias caused by research scientists ignoring their
negative results until a positive one occurs. However, the amount of data required to achieve
statistical significance helps reducing this problem, i.e., in order to achieve statistical signifi-
cance on a false result requires many more iterations.

3.4 Comments

This work does not directly discuss the agnostic Bayes approach, the subject of this thesis.
However, the term Pr (RD(h) < RD(g)|T ) is at the heart of this idea. In this work, this term
is limited to the comparison of only two classifiers and is also limited to the zero-one loss
metric. I spent a great amount of effort to generalize this idea to a general loss function with
a set H of size greater than two. Interestingly, the solution came to me while I was working on
another problem. In fact, it even took me several months to realize that it was the answer of
what I was searching for. This generalization will be presented in the next work, in Chapter 5.
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The following work has been adapted from its original version to accommodate the current
notation. The main modification has been to use D instead of D for the task’s unknown
distribution over X ×Y and consequently, we use Dir instead of D to designate the Dirichlet
distribution. We also changed I(a) to I[a] as the indicator function to avoid confusion with
the identity matrix I that is often used in this work.
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Chapter 4

Bayesian Comparison of Machine
Learning Algorithms on Single and
Multiple Data sets

4.1 abstract

We propose a new method for comparing learning algorithms on multiple tasks which is based
on a novel non-parametric test that we call the Poisson binomial test. The key aspect of this
work is that we provide a formal definition for what is meant to have an algorithm that is
better than another. Also, we are able to take into account the dependencies induced when
evaluating classifiers on the same test set. Finally we make optimal use (in the Bayesian
sense) of all the testing data we have. We demonstrate empirically that our approach is more
reliable than the sign test and the Wilcoxon signed rank test, the current state of the art for
algorithm comparisons.

4.2 Introduction

In this paper, we address the problem of comparing machine learning algorithms using testing
data. More precisely, we provide a method that verifies if the amount of testing data is
sufficient to support claims such as : “Algorithm A is better than Algorithm B”. This is
particularly useful for authors who want to demonstrate that their newly designed learning
algorithm is significantly better than some state of the art learning algorithm.

Many published papers simply compare the empirical test risk of the classifiers produced by
their learning algorithms. This is insufficient. Since the testing data is randomly sampled
from the original task, repeating the experiment might lead to different conclusions. Moreover,
when the goal is to compare the generalization performances of learning algorithms, more than
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one task must be taken into consideration.

In an effort to quantify the differences between learning algorithms, some authors estimate
the variance of the risk over the different folds of cross validation. However, since the differ-
ent training sets are correlated, this violates the independence assumption required by the
variance estimator. Moreover, Bengio and Grandvalet [2004, 2005] proved that there is no
unbiased variance estimator for k-fold cross validation. To overcome this problem, Dietterich
[1998], Alpaydm [1999] developed the 5 × 2 cross validation which performs an average over
a quasi-unbiased variance estimator.

Langford [2006] observed that the number of classification errors follows a binomial distribu-
tion and proposed a probabilistic testing set bound for the risk of classifiers. A lower and an
upper bound on the true risk is then used to determine if the observed difference in empirical
testing errors implies that the true risks differ with high confidence. While this non-parametric
approach is rigorous and statistically valid, it has low statistical power. Indeed, in practice,
the method often claims that there is not enough data to assert any statistical differences.

When the goal is to identify if an algorithm is more suited for general learning than another,
both algorithms are analyzed over several data sets. In this situation, some authors propose to
average the risk from the different tasks. This is also incorrect. Indeed, consider an algorithm
that fails to obtain a good classifier on a task where the risk usually lies around 0.1. This
would draw shadow on all the good work this algorithm could perform on tasks having low
risk (around 0.01). Thus, we adopt the common viewpoint that the risk is incommensurable
[Demšar, 2006a] across the different tasks.

To address the incommensurability issue, methods such as the sign test Mendenhall [1983]
choose to ignore the magnitude of the difference on each task and simply count how many
times the algorithm is better than its competitor on the set of tasks. When more than one
learning algorithm is available, the Friedman test Friedman [1937] averages the rank of the
classifiers across the different tasks, where each rank is obtained by sorting the empirical test
risk of the produced classifiers for a particular task. This metric is able to partially take into
account the amount of differences between the risk of classifiers. However, when only two
algorithms are compared, it becomes equivalent to the sign test. Alternatively, it is possible
to use the Wilcoxon signed rank (WSR) test Wilcoxon [1945]. Instead of simply counting
the number of times an algorithm is better than its competitor, like the sign test does, each
count is weighted by the rank of the amount of differences in the risk. More precisely, the
absolute differences between the empirical test risk of the produced classifiers are sorted across
the different tasks. Then the rank of this magnitude is used to weight the counts for both
algorithms.

To demystify which methods are appropriate, Demšar Demšar [2006a] performed a benchmark
and concludes that non-parametric tests such as the sign test, the WSR test Wilcoxon [1945]
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and the Friedman test Friedman [1937] are safer to use than methods that assume a normal
distribution of the data such as a the t-test or ANOVA. He also concludes that methods
assuming some but limited commensurability such as the Friedman test and the WSR test,
have more power than the sign test.

Our Contributions

Inspired by the work of Langford Langford [2006], we use the fact that each error performed
by a classifier on a test set follows a Bernoulli law. In other words, the true risk1 of a classifier
is defined as the probability of performing an error on the given task. Instead of obtaining
bounds on the true risk like Langford did, we answer a simpler question : “Does classifier h
have a smaller true risk than classifier g?”. It is simpler in the sense that instead of having
to estimate two real values, we only have a single binary variable to estimate. Since the
test set has only a finite amount of samples, we use the Bayesian methodology to obtain the
probability of either outcome. Using this approach, we are also able to take into account the
dependencies induced when evaluating classifiers on the same test set.

To be able to compare two learning algorithms on several tasks, we introduce a new concept
called a context. It represents a distribution over the different tasks a learning algorithm
is meant to encounter. Then, each time a task is sampled from the context, whether or not
algorithm A produces a better classifier than algorithm B follows a Bernoulli law. This means
that we do not need to explicitly know the underlying distribution of the context to obtain
a probabilistic answer to the following question : “Does algorithm A have a higher chance of
producing a better classifier than algorithm B in the given context?”.

To compare our new methodology to the sign test and the WSR test, we apply the different
methods on a wide range of synthetic contexts2. Then, an analysis of the false positives and
false negatives shows that the newly proposed method consistently outperforms these widely
used tests.

The key aspect of this work is that we provide a formal definition for what is meant to have an
algorithm that is better than another. Also, we are able to take into account the dependencies
induced when evaluating classifiers on the same test set. Finally we make optimal use (in the
Bayesian sense) of all the testing data we have. Also, note that all algorithms described in
this paper are available as open source software on http://code.google.com/p/mleval/.

1The true risk is the limit value obtained with probability 1 when the size of the test set goes to infinity.
2Note that, if one wants to compare these different methodology, the resulting experiments will have to be

performed on contexts for which the underlying distribution W is known, because, otherwise, it is impossible
to state which algorithm is “really” better.
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4.3 Theoretical Setup

We consider the classification problem. In the single task case, the input space X is an
arbitrary set and the output space Y ⊂ N denotes the set of possible classes. An example
is an input-output pair (x, y) where x ∈ X and y ∈ Y. Throughout the paper we make the
usual assumption that each example is drawn according to an unknown distribution D on
X × Y. A classifier is a function h : X −→ Y. The risk RD(h) of classifier h on distribution
D is defined as E

(x,y)∼D
I[h(x) 6= y] where I[a] = 1 if predicate a is true and I[a] = 0 otherwise.

We say that classifier h is better than classifier g with respect to D (denoted as h D� g) when
RD(h) < RD(g).

A learning algorithm is a function A that takes, as input, a set of examples called the training
set and returns, as output, a classifier. Our goal is to find a metric that determines if an
algorithm A is better than another algorithm B. In order to do so, we assume that the
input-output space X ×Y, the data-generating distribution D on X ×Y, and the number m
of training examples are sampled i.i.d. from an (unknown) distribution W. We refer to W as
being the context from which the different data sets are drawn.

Given two learning algorithms, A and B, and a contextW, we define q̃AB|W as the probability
that A is better than B within the context W, i.e.,

q̃AB|W
def= E

(D,m)∼W
E

S∼Dm
I
[
A(S) D� B(S)

]
(4.1)

Consequently, we say that A is better than B within the context W iff q̃AB|W > 1/2, i.e.,

A W� B ⇔ q̃AB|W > 1
2 (4.2)

The definition of q̃AB|W is simple but, in practice, we do not observeW nor any of the sampled
D. It is thus not possible to directly determine if A W� B. However, we are able to provide a
probabilistic answer by using Bayesian statistics.

4.4 Bounding the Risk

We cannot evaluate the true risk of a classifier h with respect to D. However, using a test set
T ∼ Dn, we can evaluate a probability distribution over the possible values of RD(h).

This is done by first observing that kh def= nRT (h) follows a binomial law of parameter p def=
RD(h). Next, we will use Bayes’ theorem to obtain a posterior distribution over p. But first,
we need to provide a prior distribution.

Since the beta distribution is the conjugate prior of the binomial distribution, it is wise to
use it for the prior over p, with parameters α′ > 0 and β′ > 0 :

B(p;α′, β′) def= Γ(α′+β′)
Γ(α′)Γ(β′)p

α′−1(1− p)β′−1,
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where Γ denotes the gamma function. It follows from Bayes’ theorem, that the posterior will
also be a beta distribution, but this time, with parameters α def= α′+ kh and β def= β′+ n− kh.

To complete the choice of the prior, we still need to specify the values for α′ and β′. This could
be achieved by using some information coming from the training set or some knowledge we
might have about the learning algorithm. However, to stay as neutral as possible as advocated
by Jaynes Jaynes [1957], we chose the least informative prior—which is the uniform prior given
by α′ = β′ = 1.

Now that we have a probability distribution over RD(h), we can use the cumulative distribu-
tion, to obtain the probability that the risk is smaller than x :

Bc(x;α, β) def=
∫ x

0
B (t;α, β) dt

From the nature of B( · ;α, β), Bc( · ;α, β) is a one to one relation. Therefore, it has an inverse
that we denote by B−1

c ( · ;α, β).

Using this inverse function, we can now obtain a probabilistic upper bound of the risk

Pr
(
RD(h) ≤ B−1

c (1−δ;α, β)
)
≥ 1−δ (4.3)

where δ is the probability that our bound fails and is commonly set to small values such as
0.05. Since the bound also depends on δ, smaller values loosen the bound while higher values
tighten the bound.

When α′ = 1 and in the limit where β′ → 0, we converge to the bound described in Theorem
3.3 of Langford’s tutorial Langford [2006]. This can be shown using the following identity
Abramowitz and Stegun [1964]

k∑
i=0

(
n

i

)
pi (1− p)n−i = 1−Bc (p, k+1, n−k) , (4.4)

to rewrite the Langford’s test-set bound as follows : Pr
(
RD(h) ≤ B−1

c (1−δ; kh+1, n−kh)
)
≥

1−δ. Consequently, the probabilistic risk upper bound of Equation (4.3), given by the Bayesian
posterior, becomes Langford’s test-set bound when the prior has all its weight on RD(h) = 1
(i.e., when we assume the worst). Finally, a numerical evaluation of B−1

c can be computed
using a Newton method and is available in most statistical software.

4.5 Probabilistic Discrimination of Learning Algorithms on a
Single Task

Let T be any fixed classification task, or equivalently, let D be any fixed (but unknown)
probability distribution on X × Y. Let also A and B be two learning algorithms. In this
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section, we want to evaluate, for the task T , the probability that a classifier obtained using
A is better than a classifier obtained using B.

In the previous section, we saw that, using a test set T ∼ Dn we can obtain a probability distri-
bution over RD(A(S)). Similarly, with a second test set T ′ ∼ Dn′ , we can obtain a probability
distribution over RD(B(S′)). When both training sets and both test sets are independent,
the joint distribution over RD(A(S)) and RD(B(S′)) is simply the product of the individual
distributions. From this joint distribution, we can therefore evaluate Pr

(
A(S) D� B(S′)

)
by

integrating the probability mass in the region where RD(A(S)) < RD(B(S′)).

However, in most experiments, learning algorithms are sharing the same training set and the
same testing set. To take these dependencies into account, let us exploit the fact that the
joint error of the pair of classifiers comes from a multinomial distribution.

More precisely, let h def= A(S) and g def= B(S) where S ∼ Dm. For each sample (x, y) ∼ D,
we have the following three outcomes: (1) h(x) 6= y ∧ g(x) = y; (2) h(x) = y ∧ g(x) 6= y;
(3) h(x) =g(x) with probability ph, pg and p respectively. Moreover, ph + pg + p = 1. Let
kh, kg, and k, be the respective counts of these events on a testing set T . Then (kh, kg, k)
follows a multinomial law with parameters (|T |, (ph, pg, p)).

Since RD(h) < RD(g) whenever ph < pg, our aim is to obtain a probability distribution over
(ph, pg, p), given (kh, kg, k), to be able to integrate the probability mass in the region where
ph < pg. This can be done using Bayes’ theorem whenever we have a prior distribution.

Since the Dirichlet distribution is the conjugate prior of the multinomial, it is wise to use it
for the prior information we have about ph, pg and p. The Dirichlet distribution of parameters
(αh, αg, α) is defined as

Dir (ph, pg, p;αh, αg, α) def= Γ(αh+αg+α)
Γ(αh)Γ(αg)Γ(α)p

αh−1
h pαg−1

g (1−pg−ph)α−1

where αh > 0, αg > 0 and α > 0.

If the prior is a Dirichlet with parameters
(
α′h, α

′
g, α
′
)
, it follows from Bayes’ law that, after

observing kh, kg and k on the testing set, the posterior is also a Dirichlet with parameters
(αh, αg, α) where αh def= α′h + kh, αg def= α′g + kg and α def= α′ + k. Consequently, the following
theorem gives us the desired result for Pr

(
h

D� g
)
.

Theorem 4.5.1. Let αh def= α′h + kh, αg def= α′g + kg and α def= α′ + k, where α′g > 0, α′h > 0,
α′ > 0 , then

Pr
(
h

D� g
)

=
∫ 1

0

∫ 1−p
2

0
Dir (pg, ph, p ; αg, αh, α) dph dp

= Bc
(

1
2 ;α′h + kh, α

′
g + kg

)
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Proof. The first equality follows from the explanations above. Now, using C def= Γ(αh+αg+α)
Γ(αh)Γ(αg)Γ(α) ,

γ def= 1− p and z def= ph
γ , we have :

∫ 1

0

∫ 1−p
2

0
Dir (pg , ph, p ; αg , αh, α) dph dp

= C

∫ 1

0
pα−1

∫ 1−p
2

0
p
αh−1
h

(1−p−ph)αg−1 dph dp

= C

∫ 1

0
pα−1

∫ 1
2

0
(γz)αh−1 (γ−γz)αg−1 γ dz dp

= C

∫ 1

0
pα−1γαh+αg−1 dp

∫ 1
2

0
zαh−1 (1−z)αg−1 dz

= Γ(αh+αg)
Γ(αh)Γ(αg)

∫ 1
2

0
zαh−1 (1−z)αg−1 dz

def= Bc
(

1
2 ;α′h + kh, α

′
g + kg

)

4.5.1 About the Prior

From Theorem 4.5.1, we see that Pr
(
h

D� g
)

does not depend on k nor α′. However, to
complete the choice of the prior distribution, we still need to provide values for αh and
αg. It might be possible to extract information from the training set using cross-validation.
However, this approach is not straightforward and will require further investigation in future
work. Also, we should not introduce favoritism by using an imbalanced prior. Hence, one
should use αh = αg

def= α̃. This leaves us with only one parameter, α̃, for the prior. Using
α̃ > 1 is equivalent to supposing, a priori, that both classifiers are similar. On the opposite,
using 0 < α̃ < 1 is equivalent to supposing, a priori, that both classifiers are different. Since
they are no evidences supporting the choice of one over the other, we follow Jaynes’ maximum
entropy principle Jaynes [1957] and we use α̃ = 1, i.e., αh = αg = 1, which represents the
uniform distribution.

4.6 The Poisson Binomial Test

In this section we generalize the results of the previous section to contexts. In context W,
whether or not algorithm A outputs a better classifier than algorithm B is a Bernoulli random
variable of parameter q̃AB|W (Equation (4.1)). Therefore, after observing N data sets, the
number of wins of A over B is a binomial distribution of parameter q̃AB|W and N .

Knowing the number of wins of A on N trials would allow us to directly integrate the Beta
distribution to evaluate the probability that A W� B. However, since we only have a proba-
bilistic answer when discriminating learning algorithms on a single task, we need to take the
expectation over the different number of wins.

37



Figure 4.1: A graphical model representing the dependencies between the variables during
the process of evaluating algorithms on multiple data sets.

Putting this more formally, comparing A and B on data set i yields the multinomial Mi of
parameters phi, pgi and |Ti|. As seen in Section 4.5, this multinomial is hiding the process of
comparing hi and gi, trained on Si and tested on Ti. Let ki be the observations obtained on
the ith test set (e.g., ki = (khi, kgi)). To simplify equations, we also define di def= I (phi < pgi),
κ def= ∑

i di, k def= (k1, k2, ..., kN ), d def= (d1, d2, ..., dN ), and r def= q̃AB|W . As represented in
Figure 4.1 the only observed variables are the ones in k.

Consequently, we have :

Pr
(
A W� B

∣∣∣ k
)

=
∫ 1

1
2

p (r | k) dr

=
∫ 1

1
2

N∑
κ=0

p (r, κ | k) dr

=
N∑
κ=0

∫ 1

1
2

p (r | κ) drPr (κ | k)

=
N∑
κ=0

Pr (κ | k)Bc
(

1
2 , N−κ+β̂B, κ+β̂A

)

where we have used the beta distribution with parameter β̂A and β̂B for the prior distribution
over r and, using Bayes’ theorem, have obtained a posterior also given by a beta distribution.
To avoid favoritism over A or B, it is crucial to use β̂A = β̂B

def= β̂. Also, to maximize entropy,
we use β̂ = 1.
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We are now left with one term to evaluate:

Pr (κ | k)

=
∑

d∈{0,1}N
Pr (κ | d) Pr (d | k)

=
∑

d∈{0,1}N
Pr (κ | d)

N∏
i=1

Pr (di | ki)

=
∑

d∈{0,1}N
I

(∑
i

di = κ

)
N∏
i=1

pdii (1−pi)1−di (4.5)

where pi def= Pr
(
hi

D� gi
)
is given by Theorem 4.5.1. In this form, Equation (4.5) is computa-

tionally hard to track. However, this represents a Poisson-binomial distribution Wang [1993],
which is the generalization of the binomial distribution when the Bernoulli trials have different
probabilities. There exist several ways to compute such probability distribution Fernandez
and Williams [2010], Chen et al. [1994], Chen and Liu [1997]. In our case, we use the following
dynamic programming algorithm. We have Pr(κ) = qN (κ) where qi(κ) is defined recursively
as:

qi(κ) def=


1 if i = 0 ∧ κ = 0
0 if κ < 0 ∨ κ > i

piqi−1(κ− 1)
+(1− pi)qi−1(κ)

otherwise

This algorithm has O(N2) complexity. It is possible to build a O
(
N log2(N)

)
algorithm,

using spectral domain convolution to combine the solution of a divide and conquer strategy.
But the O

(
N2) algorithm is simpler and fast enough for our needs.

4.6.1 Transitivity and Ordering

The operator D� is transitive for any D since it is based on the risk of the classifiers. We then
have h D� g ∧ g D� f =⇒ h

D� f . However, this transitive property doesn’t hold for W�. This
can be shown with a small counterexample presented on Figure 4.2. In this example, we are
comparing algorithms A, B and C on data sets a, b and c. We work in the theoretical setup.
Therefore we knowW and assume that it is the uniform distribution on the 3 data sets. Also,
the exact risk for each classifier is expressed in Figure 4.2. Hence, from Definition (4.2), we
have A W� B, B W� C and C W� A. This implies that W� cannot be used for ordering algorithms.

The non-transitivity of W� is a consequence of ignoring the amount of differences between the
two risks. This also affects other methods such as the sign test (defined in Section 4.7.1). In
most practical situations, the finite amount of samples have the side effect of weighting the
differences between classifiers. Thus, alleviating the chances of observing a high probability
cycle.
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A B C
a 0.1 0.2 0.3
b 0.3 0.1 0.2
c 0.2 0.3 0.1

Figure 4.2: A minimalist counterexample on the transitivity of comparison on multiple data
sets.

4.7 Simulations With Synthetic Contexts

In this section we compare the performances of the Poisson binomial test with the sign test
and the WSR test. Ideally, we would run learning algorithms with the different evaluation
methods on contexts for which we know the real underlying distributions and we would repeat
this process several times. However, we do not have such data and this process would take
forever. Fortunately, we saw that the outcome of testing two learning algorithms on a task is
equivalent to sampling from a multinomial of parameters pg, ph, p, and n def= |T |. Therefore,
by defining a probability distribution over the four parameters of this multinomial, we build
what we call a synthetic context.

With those contexts, it is now easy to sample the data we need to compare the answer of the
different methods with the real answer. However, the behavior of the three methods depends
on a confidence threshold which offer a trade-off between the success rate and the error rate.
It is thus hard to compare them with a fixed threshold. To overcome this difficulty, we use
the area under the ROC curve (AUC) as a metric of performances.

The following subsections provide the details on how to obtain the p-values for the sign test
and the WSR test and on how to compute the AUC. Finally, in Section 4.7.4, we present the
results obtained on different synthetic contexts.

4.7.1 Sign Test

The sign test Mendenhall [1983] simply counts the number of times that A has a better em-
pirical metric than B and assumes that this comes from a binomial distribution of parameters
q̃AB|W and N . In our case, we use sgn (khi − kgi) and any sample i where khi = kgi is ignored,
for i ∈ {1, 2, ..., N}.

To assert that the observed difference is significant enough, the sign test is based on hypothesis
testing. In our case, this corresponds to whether A W= B or not. More formally, H0 : q̃AB|W =
0.5 and H1 : q̃AB|W 6= 0.5. Let κ+ be the number of times we observe a positive value of
sgn (kgi − khi) and κ− be the number of times we observe a negative value. Then, the two
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tailed p-value of H0 is given by

ρs(κ+, κ−) = 2
min(κ+,κ−)∑

i=0

(
κ+ + κ−

i

)
1

2κ++κ−

It is common to reject H0 when ρs(κ+, κ−) goes below 0.05 (or any reasonable threshold). In
that case, we proceed as follows : if κ+ > κ−, we conclude that A W� B, and we conclude the
converse when κ+ < κ−.

4.7.2 Wilcoxon Signed Rank (WSR) Test

Instead of simply counting the number of wins like the sign test does, the WSR test Wilcoxon
[1945] weight each count by the rank of the absolute difference of the empirical risk. More
precisely, the empirical risk difference is

di
def= kgi − khi

mi
.

The samples where di = 0 are rejected and we use J as the set of indices where di 6= 0. To
take into account the fact that there might be samples of equal rank, we use the following
formula to compute the rank :

ri
def= 1

2

1 +
∑
j∈J

I (|dj | < |di|) +
∑
j∈J

I (|dj | ≤ |di|)


The sum of positive rank is c+

def= ∑
j∈J rjI (dj>0) and the sum of negative rank is c− def=∑

j∈J rjI (dj<0).

The WSR test assumes that the di are sampled i.i.d. from a symmetric distribution around
a common median3. Then, under H0, the values of I (di < 0) are i.i.d. and have equal proba-
bilities for either outcome. This allows us to recursively compute the probability distribution
for the values of c+ under H0 as follows :

wn(c) def=


0 if c 6∈ [0, n(n+1)

2 ]
1 if n=1 and c∈ [0, n(n+1)

2 ]
wn−1(c)+wn−1(c−n)

2 otherwise

Finally, the two tailed p-value is given by :

ρw(c+, c−) def= 2
min(c+,c−)∑

c=0
w|J |(c)

and whenever ρw(c+, c−) ≤ δ, we reject H0. In that case, we proceed as follows : if c+ > c−,
we conclude that A W� B, and conclude the converse when c+ < c−.

3We will see that the symmetric assumption is inappropriate for machine learning algorithm evaluation.
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4.7.3 Area Under the ROC Curve

With a synthetic context, we can directly sample a set of khi and kgi for i ∈ {1, 2, . . . , N}.
Providing this information to one of the methods, we obtain an answer â and a confidence level
γ. In the case of the sign test, the confidence level is 1−ρs(κ+, κ−). For the WSR test, we use
1−ρw(c+, c−). Finally, for the Poisson binomial test, we use max

(
Pr
(
A W� B

)
,Pr

(
B W� A

))
.

Next, repeating this experiment M times for a given threshold τ and comparing the answer
to the real answer a, we obtain a success count sτ and an error count eτ . More formally,

sτ
def= ∑M

j=1 I[γj > τ ] I[âj = a]

eτ
def= ∑M

j=1 I[γj > τ ] I[âj 6= a].

To obtain the ROC curve, we have computed all pairs (sτ , eτ ) by selecting τ from the set
of the M obtained confidence levels γj . Next, to obtain the AUC, we use a trapezoidal
approximation of the integral over the values

(
sτ
s0
, eτe0

)
where s0 and e0 correspond to the

success count and error count when the threshold is at its minimum value.

To obtain a good resolution for the ROC curve, we fix M to 105. Also, to make sure that
there is no bias in the methods, we randomly swap the khi and kgi and, we adjust the value
of a accordingly.

4.7.4 Experimental results
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Figure 4.3: Comparison of the 3 methods, using AUC on a single Dirichlet synthetic context,
for various values of N where n is fixed to 1001.

As explained before, a synthetic context is completely determined by a probability distribution
over the parameters of the three outcome multinomial. For simplicity reasons, we fix n, and
use Dirichlet distributions to represent synthetic contexts.

For our first experiment, we fix n to 1001 and use the Dirichlet distribution of parameters
(100, 110, 790). The expected values for ph, pg and p are then respectively 0.1, 0.11 and
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Figure 4.4: Comparison of the 3 methods, using AUC on a multiple Dirichlet synthetic context,
for various values of N where n is fixed to 1001.
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Figure 4.5: Comparison of the 3 methods, using AUC on a multiple Dirichlet synthetic context,
for various values of n where N is fixed to 21.

0.79. This means that in this context A W� B. Figure 4.3 expresses the AUC of the three
different methods, for various values of N . From those results, we first observe that the
Poisson binomial test constantly outperform the sign test. Also, we observe that the WSR
test have performances similar to our approach. However, it is important to understand that
this synthetic context is favorable to the WSR test. Indeed, the di (see Section 4.7.2) are
sampled from a symmetric distribution, which is one of the assumptions required by the WSR
test.

To explore how the WSR test behaves with a non-symmetric distribution of the di, we use the
following bimodal context : with probability 2

3 , we sample from the Dirichlet distribution of
parameters (100, 140, 9760), otherwise we sample from the Dirichlet distribution of parameters
(1400, 1000, 7600). Now, fixing n to 100001 and N to 14, we have an AUC over 0.8 for the
sign test and the Poisson binomial test, while the AUC of the WSR test is 0.334, i.e., worse
than random. This means that the WSR test may drastically fail in some situations. Such
events can occur in practice when a learning algorithm is better than its competitor on tasks
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having many classes, but the two algorithms are exposed to a context where tasks having
fewer classes are more frequent. Since the average risk typically raises with the number of
classes, this would create an asymmetrical distribution of the empirical risk differences.

Finally, to build a more plausible context, we use the error counts obtained when comparing
svm with parzen window on 22 data sets coming from UCI and MNIST (Section 4.10.1).
The synthetic context is thus a uniform distribution over 22 Dirichlet distributions where
the parameters are provided in supplementary materials. The AUC for various values of N
and various values of n are expressed in Figure 4.4 and Figure 4.5. From those results, we
conclude that the Poisson binomial test is a significantly more appropriate test for machine
learning algorithm comparison.

4.8 Comparing Popular Algorithms

Table 4.1: Comparison of the test risk for 3 of the 4 algorithms on 5 of the 22 data sets.
Individual significance is shown, using Theorem 4.5.1, for selected pair of classifiers.

svm
Di� ann

Di� parzen
Adult 0.157 0.52 0.157 1.00 0.172
Glass 0.140 0.61 0.150 0.40 0.140

MNIST:08 0.003 1.00 0.012 0.04 0.006
Mushrooms 0.000 0.50 0.000 0.99 0.001

Sonar 0.154 0.84 0.202 0.42 0.192

Table 4.2: The pairwise Poisson binomial test showing Pr (row � col). Gray values represent
redundant information.

svm ann parzen adaBoost
svm 0.50 0.72 0.99 0.95
ann 0.28 0.50 0.88 0.87

parzen 0.01 0.12 0.50 0.52
adaBoost 0.05 0.13 0.48 0.50

Table 4.3: The pairwise sign test for 1 - ρs(κ+, κ−). Cases where κ+ 6> κ− are omitted.

svm ann parzen adaBoost
svm - 0.88 1.00 0.92
ann - - 0.71 0.83

parzen - - - -
adaBoost - - 0.18 -

Table 4.1 presents the empirical test risk RTi(Aj(Si)) for three popular learning algorithms
on five UCI data sets. A more complete table is provided in the supplementary material.
Table 4.2 expresses the pairwise comparison of algorithms when using the Poisson binomial
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Table 4.4: The pairwise WSR test for 1 - ρw(c+, c−). Cases where c+ 6> c− are omitted.

svm ann parzen adaBoost
svm - 0.30 0.97 0.92
ann - - 0.95 0.41

parzen - - - -
adaBoost - - - -

test. For comparison, we have also reported the p-value of the sign test in Table 4.3 and for
the WSR test in Table 4.4. Here, the three methods yield comparable results but, in contrast
with the experiment in Section 4.7, it is not possible to conclude if one method yields better
conclusions than the others since the distribution W is unknown here.

When performing experiments on synthetic contexts, we observed that using a threshold of
0.85 for the Poisson binomial test yield a lower type I error rate than the sign test and
the WSR test with a threshold of 0.90 on the confidence level. Using this remark, the sign
test perform 2 assertions, the WSR test perform 3 assertions and, the Poisson binomial test
perform 4 assertions. While it seems favorable to our approach, another test might have yield
different results. However, the results provided in Section 4.7 are reliable and support the
same conclusion.

4.9 Future Work

In this work we did not addressed the problem of multiple comparisons. This case occurs when
more than one probabilistic comparison has to be made. Then, the probability of having a
false conclusion inrcreases with the number of comparisons. To address this problem, it is
common to use methods to control the familywise error rate Hochberg and Tamhane [1987] or
the false discovery rate Benjamini and Hochberg [1995]. However, the current approaches are
made to work with frequentist comparisons and are not directly applicable to our Bayesian
tool. To this end, we are currently working on a Bayesian method to control the false discovery
rate under dependencies.

We are also investigating on how to extend the Poisson binomial test to work outside of
the classification paradigm. This would allow us to compare algorithms meant to work on
regression or structured output tasks.

Together, these new methods should provide the machine learning community with a wide
range of tools to shed light on the discovery of new learning algorithms.

45



Acknowledgement

Thanks to Pascal Germain, Alexandre Lacasse, Jean-Francis Roy, and Francis Turgeon-Boutin
for their help in the software implementation. Thanks to CLUMEQ for providing support and
access to Colosse’s high performance computer grid. Work supported by NSERC Discovery
Grants 122405 (M. M.) and 262067 (F. L.).

46



4.10 APPENDIX—SUPPLEMENTARY MATERIAL

4.10.1 Synthetic Contexts

Table 4.5: List of Dirichlet parameters used in the multimodal synthetic context.

kh+1 kg+1 n-kh-kg+1
11 14 1223
12 20 1232
10 16 4078
13 15 1228
31 17 320
22 22 148
27 35 154
14 18 112
17 25 286
24 17 151
149 240 5555
16 30 762
19 14 791
11 16 237
79 127 3834
15 20 1213
10 11 803
15 15 122
11 29 176
14 18 352
46 64 410
31 1019 2694

4.10.2 Experimentation details

In this section, we compare the following commonly-used learning algorithms:

• svm: Support Vector Machine Cortes and Vapnik [1995] with the RBF kernel.

• parzen: Parzen Window Parzen [1962], Rosenblatt [1956] with the RBF kernel.

• adaBoost: AdaBoost Freund and Schapire [1995] using stumps as weak classifiers.

• ann: Artificial Neural Networks Minsky and Papert [1969] with two hidden layers,
sigmoid activation function and L2 regularization of the weights.

These learning algorithms are compared on 18 binary classification data sets coming from
UCI and 4 other data sets coming from MNIST. Our goal is to explore the behavior of the
Poisson binomial test on commonly-used learning algorithms applied on real data sets rather
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than discriminating the quality of these learning algorithms. The details on the tuning of
these algorithms are provided in the appendix.

Table 4.6: Comparison of RTi(Aj(Si)) for i ∈ {1, 2, ..., 22} and j ∈ {1, 2, 3, 4}. Individual
significance is shown, using Theorem 4.1, for selected pair of classifiers.

svm � ann � parzen � adaBoost
Adult 0.157 0.52 0.157 1.00 0.172 0.00 0.151
Breast 0.041 0.50 0.041 0.87 0.053 0.50 0.053
Credit 0.187 0.00 0.129 0.84 0.144 0.43 0.141
Glass 0.140 0.61 0.150 0.40 0.140 0.95 0.206

Haberman 0.279 0.57 0.286 0.05 0.231 0.50 0.231
Hearts 0.196 0.03 0.135 0.98 0.196 0.97 0.257

Ionosphere 0.057 0.77 0.074 1.00 0.160 0.05 0.109
Letter:AB 0.000 0.94 0.004 0.12 0.001 0.99 0.009
Letter:DO 0.014 0.73 0.017 0.04 0.008 1.00 0.040
Letter:OQ 0.009 0.76 0.013 0.98 0.027 0.89 0.038

Liver 0.349 0.71 0.366 0.75 0.395 0.07 0.331
MNIST:08 0.003 1.00 0.012 0.04 0.006 1.00 0.016
MNIST:17 0.007 0.69 0.007 0.64 0.008 0.36 0.007
MNIST:18 0.011 1.00 0.037 0.00 0.017 0.42 0.016
MNIST:23 0.017 1.00 0.035 0.00 0.022 1.00 0.041
Mushrooms 0.000 0.50 0.000 0.99 0.001 0.01 0.000
Ringnorm 0.015 1.00 0.054 1.00 0.282 0.00 0.027

Sonar 0.154 0.84 0.202 0.42 0.192 0.59 0.202
Tic-Tac-Toe 0.161 0.00 0.052 1.00 0.198 1.00 0.357

USVotes 0.069 0.25 0.065 0.98 0.092 0.01 0.051
WDBC 0.049 0.02 0.021 1.00 0.077 0.03 0.042

Waveform 0.068 0.26 0.067 1.00 0.080 0.41 0.079

Experimental Setup

Each data set is split into two equal-size data set called Si and Ti. Then, each learning
algorithm is trained on Si and tested on Ti using the zero-one loss. Finally, all pairs of
learning algorithms are compared using both the Poisson binomial test and the sign test.

Since each learning algorithm comes with adjustable hyperparameters, we use the 10-fold
cross validation estimate of the error rate on Si to select the most appropriate set of values.

Details on Learning Algorithms

We present here the details about the tuning of the learning algorithms used in the experi-
mental setup.

To concisely define the list of explored hyperparameters, we use Link(a, b) def= {a, a + s, a +
2s, ..., b} where s def= b−a

k−1 . This represents k values uniformly selected in the interval [a, b].
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Similarly, we define Logk(a, b)
def= {10x | x ∈ Link(a, b)}.

When searching the appropriate parameter for the RBF kernel, we use the following approach.
First recall that the RBF kernel values are given by

kRBF(x, x′) def= exp
( −r

2σ̂2 ‖x− x
′‖2
)
, (4.6)

where r is found using cross-validation and σ̂ is obtained using the train set. To obtain an
appropriate value for σ̂, we used the 10th percentile over the distribution of distances between
all pairs of examples in Si.

To build weak learners for boosting algorithms, we use c stumps per attribute where c is
constant across all attributes and is found using cross validation. For each attribute, each of
the c threshold values are uniformly distributed across the interval of values realized on the
training data.

svm: Support Vector Machine Cortes and Vapnik [1995] with RBF kernel. The width r of
the kernel (Equation (4.6)) is selected from Log20(−5, 5) and the soft-margin parameter C is
selected from Log20(−2, 5).

parzen: Parzen Window Parzen [1962], Rosenblatt [1956] with RBF kernel. The width r

of the kernel is selected from Log30(−4, 4).

adaBoost: AdaBoost Freund and Schapire [1995], using stumps as weak classifiers. The
number of iterations is selected using cross validation for values in {2n | n ∈ {1, 2, ..., 10}} and
the number of stumps is selected from { 1, 2, 3, 4, 6, 10, 14, 21, 31 }.

ann: Artificial Neural Networks Minsky and Papert [1969] with two hidden layers, sigmoid
activation function, and L2 regularization of the weights. The input space is normalized on
the training set, such that each attribute has zero mean and unit variance. The number of
neurons on the second layer is d

√
Nl1 e where Nl1 is the number of neurons on the first layer

and is selected from { 3, 4, 5, 6, 7, 9, 11, 13, 16, 19, 23, 28, 33, 40, 48, 57, 69, 83, 100 }.
Finally, the weight of the L2 regularizer is selected from Log20(−2, 2). The network is trained
using conjugate gradient descent with no early stopping.

In all cases, when there are two hyperparameters, all pair of proposed values are explored.
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Chapter 5

Second Paper Presentation

5.1 Details

Agnostic Bayesian Learning of Ensembles
Alexandre Lacoste, François Laviolette,Mario Marchand, and Hugo Larochelle
In Proceedings of The 31st International Conference on Machine Learning, 2014.

5.2 Early Version

An early version of this work was presented at a NIPS workshop in December 2012, and can
be found in Appendix A.

Model Averaging With Holdout Estimation of the Posterior Distribution
Alexandre Lacoste, François Laviolette, and Mario Marchand
In NIPS workshop on Perturbations, Optimization, and Statistics, December 2012.

5.3 Context

In Section 1.3, we saw how to select the optimal hyperparameter configuration on a validation
set V ∼ Dn using

γV
def= argmin

γ∈Γ
RV (hγ).

While this works well in practice, by selecting the single best model, we may suffer from
overfitting. This overfitting is usually mild since |Γ| traditionally ranges from a few dozen to
a few hundred hyperparameters configurations. However, with the increasing computer speed
and new optimization techniques [Snoek et al., 2012], machine learning scientists are now
able to explore more exotic models composed of several hyperparameter variables. In such
cases, overfitting can become an important problem and treating it can provide significant
generalization benefits.
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In Section 2.1.6, we saw that when the model is Bayesian, the prior parameters can be
marginalized out through model averaging. Sadly, this technique is not usable in many con-
texts. For one, most practical learning algorithms are not fully Bayesian. Also, the required
marginal likelihood term usually comes with an important computational cost. Finally, as
seen in Section 2.1.6, blindly performing a full hierarchical Bayesian inference without any
validation can suffer from mis-specifications problems.

For this reason, conventional cross-validation is still widely used. Yet, it is frequent to observe
a generalization gain by combining the different models obtained through cross-validation
[Zhang et al., 2006, Bell et al., 2007]. However, by choosing the single best combination of
models, we just postpone the problem of overfitting to a more complex set of predictors. Some
Bayesian approaches to model combination have been proposed [Zhang et al., 2006], but it is
limited to the zero-one loss function and the computational cost is impractical.

In other words, there is no learning algorithm that directly addresses model averaging during
the validation step to integrate out the uncertainty of selecting the single best predictor.

5.4 Contributions

In this work we explore 3 different models for estimating the following probability distribution

p(h? = h|S),

where h? def= argmin
h∈H

RD(h) is a random variable corresponding to which predictor is the

best according to D. This distribution is equivalent to p (RD(h) ≤ RD(g) ∀g ∈ H|S) and
generalizes1 the previously obtained result, p (RD(h) ≤ RD(g)|S), to |H| greater than two
and to any loss function.

As a practical application, we apply this approach on the set of predictors obtained during
the validation of hyperparameters. Specifically, after training all predictors hγ def= Aγ(S) for
each hyperparameter configuration γ ∈ Γ, we obtain a set of predictors HΓ

def= {hγ}γ∈Γ. Then,
instead of using conventional validation and searching for the one minimizing RV (hγ), we use
p(h? = hγ |V ) to carry the uncertainty about which one is the best. By doing so, we can
perform model averaging and get the generalization benefits that come with it. Extensive
experiments on several data sets confirm this anticipated generalization gain. We also show
how this method can be adapted to cross-validation.

1We now use S instead of T to estimate this distribution. This is equivalent since S, T , and V are all i.i.d
samples coming from the same distribution.
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5.5 Comments

In this work, we apply the posterior distribution p(h? = hγ |V ) on the set HΓ. This provides
a really simple and fast algorithm for a state of the art ensemble method. However, we would
like to highlight that this tool is more flexible than what this work implies. For example, if
one really aims at combining predictors instead of just performing model averaging, it suffices
to propose a set, Hcombiners, of combining functions hcombiner : Y |Γ| → Y and obtain the
corresponding distribution p (h? = hcombiner|V ) over Hcombiners.

We also note that this tool is highly related to bagging [Breiman, 1996] when used with the
bootstrap approach. In some sense, it provides a theoretical backbone to bagging while being
more specific in its way of performing the ensemble.
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Chapter 6

Agnostic Bayesian Learning of
Ensembles

6.1 abstract

We propose a method for producing ensembles of predictors based on holdout estimations of
their generalization performances. This approach uses a prior directly on the performance of
predictors taken from a finite set of candidates and attempts to infer which one is best. Using
Bayesian inference, we can thus obtain a posterior that represents our uncertainty about
that choice and construct a weighted ensemble of predictors accordingly. This approach
has the advantage of not requiring that the predictors be probabilistic themselves, can deal
with arbitrary measures of performance and does not assume that the data was actually
generated from any of the predictors in the ensemble. Since the problem of finding the best
(as opposed to the true) predictor among a class is known as agnostic PAC-learning, we refer
to our method as agnostic Bayesian learning. We also propose a method to address the case
where the performance estimate is obtained from k-fold cross validation. While being efficient
and easily adjustable to any loss function, our experiments confirm that the agnostic Bayes
approach is state of the art compared to common baselines such as model selection based on
k-fold cross-validation or a learned linear combination of predictor outputs.

6.2 Introduction

When designing a machine learning system that relies on a trained predictor, one is usually
faced with the problem of choosing this predictor from a finite class of models. In practice,
the class of models might correspond to different learning algorithms or to different choices
of hyperparameters for a specific learning algorithm. A common approach to this problem is
to estimate the generalization performance of each predictor on a holdout data set (through
a training/validation set split or using k-fold cross-validation) and use the predictor with the
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best performance. However, this approach is invariably noisy and overfitting can become a
problem. A more successful procedure is to construct an ensemble of many different learned
predictors. Many machine learning contests are won this way [Guyon et al., 2010]. For
instance, the winning team of the Netflix’s contest relied on a final predictor trained on the
output of the learned models [Bell et al., 2007]. Great care must be taken however to avoid
overfitting, e.g. by carefully tuning the predictor’s own regularization hyperparameters. The
choice of the final predictor is likely to influence the end result as well.

At the heart of this selection problem is our inability to know for sure which predictor is the
best among our model class. One natural way to reason about such uncertainty would be
to formulate it in probabilistic terms. In this paper, we propose to follow this paradigm by
formulating priors about the expected performance of each predictor in our chosen class of
models. We then use the observed loss measurements on each held-out example as evidence
for updating our posterior over the identity of the best predictor in the model class. At test
time, we can use this posterior to weight the contribution of each predictor in the ensemble
that performs the final prediction.
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We explore different ways of expressing priors over predictor performances and discuss how to
perform Bayesian inference. As we will see, this simple paradigm naturally takes into account
the correlation between the predictor’s output so as to leverage diversity among the ensemble,
which is another desiderata for ensemble learning and model averaging methods.

Unlike Bayesian model averaging [Hoeting et al., 1999], our approach does not require that the
predictors be themselves probabilistic. It can also deal with arbitrary performance measures.
More crucially, this approach does not assume that the observed data has been generated by
a predictor from the model class. In other words, we are not looking for the predictor that
best explains the observed data, assuming it was generated by a predictor coming from our
model class. Instead, at the centre of our approach, we want to find the best predictor in
terms of a task’s performance measure and among all available predictors, while reasoning
about our uncertainty around this problem in a Bayesian way.

The non-reliance on the assumption that the true underlying data generating function belongs
to our model class is also at the center of agnostic PAC-learning. For this reason, we refer to
the proposed framework as agnostic Bayesian learning.

Section 6.3 formally describes the agnostic Bayes approach. We then propose a few methods
for obtaining a posterior distribution over a set of predictors. Section 6.5 presents an adap-
tation to k-fold cross-validation estimation of the losses. Finally, several experimental results
are presented in Section 6.7.

6.3 Theoretical Setup

Throughout this paper, we use the inductive learning paradigm and make the usual assump-
tions of PAC learning theory [Kearns et al., 1994, Valiant, 1984]. Thus, a task D corresponds
to a probability distribution over the input-output space X ×Y. Given a training set S ∼ Dm,
the objective is to find, among a set H, the best function h? : X → Y. In general, H could
be any set. However, this work will focus on the case where H is a finite set of predictors
obtained from one or many learning algorithms, with various hyperparameters. We will refer
to a member of H as an hypothesis.

To assess the quality of an hypothesis, we use a loss function L : Y × Y → R that quantifies
the penalty incurred when h predicts h(x) while the true answer is y. Then, we can define
the risk RD(h) as being the expected loss of h on task D, i.e. RD(h) def= E

x,y∼D
L (h(x), y).

Finally, the best1 function is simply the one minimizing the risk, i.e. h? def= argmin
h∈H

RD(h).

Since we do not observe D, it is not generally possible to find h? with certainty. For this
reason, we are interested in inferring h? while modeling our uncertainty about it, using a

1The best solution may not be unique.
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posterior probability distribution Pr(h?= h|S). Then, after marginalizing h?, we obtain a
probabilistic prediction

Pr(y?=y|x, S) =
∑
h∈H

Pr(h?=h|S) Pr(y?=y|x, h),

where y? stands for the prediction made by h? for a given x. We note that the uncertainty in
this prediction solely comes from our lack of knowledge about h?.

In order to perform a final prediction ŷ for a given x it is tempting to use the optimal Bayes
decision theory

ŷ = argmin
y′∈Y

∑
y∈Y

Pr(yo=y|x, S)L
(
y′, y

)
,

where yo is the random variable corresponding to the observed values of y. However, the
contrast between Pr(yo=y|x, S) and Pr(y?=y|x, S) prevents us from using this approach. To
this end, we use:

ŷ = argmax
y∈Y

Pr(y?=y|x, S),

the most probable answer. This yields the following ensemble method:

E?(x) def= argmax
y∈Y

∑
h∈H

Pr(h?= h|S) I[h(x) = y] (6.1)

Before going further, we first review the usual Bayesian model averaging approach to highlight
the fact that it does not exactly use Pr(h?=h|S).

6.3.1 Standard Bayesian Model Averaging

To address the inductive learning paradigm, a variant of Bayesian model averaging can be
used, where we suppose that a deterministic function h→, belonging to H, is at the origin
of the observed relationship between x and y. To perform inference on h→, we treat it as a
random variable and assume that the observations in S have been altered by a noise model2

p(yo= y|x, h). Using the i.i.d. assumption, p(S|h) = ∏m
i=1 p(yi|xi, h)p(xi). Next, by defining

a prior distribution over H, we can perform Bayesian inference to compute p(h→= h|S) ∝
p(S|h)p(h). Finally, after marginalization of h, we obtain

Pr(yo=y|x, S) =
∑
h∈H

p(h→=h|S) Pr(yo=y|x, h),

which can be used with the optimal Bayes decision theory, to give the following ensemble
decision rule

E→(x) def= argmin
y′∈Y

∑
y∈Y

Pr(yo=y|x, S)L
(
y′, y

)
. (6.2)

This formulation has proven to be very useful. However, if the true data-generating hypothesis
does not belong to H, the posterior Pr(h→= h|S) may not converge to a posterior peaked

2The noise model could also be inferred. In this work, we use a fixed noise model.
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at the best hypothesis h?, as m → ∞. This misbehavior has been studied by Grünwald
and Langford [2007] for the zero-one loss scenario. It was shown that under some reasonable
restrictions on the prior, there exists a distribution D where the risk of the Bayes predictor
is significantly higher than RD(h?).

One way to overcome this inconsistency is to commit to a noise model that leverages the
loss function, such as Pr(yo = y|h, x) ∝ e−βL(h(x),y) for some fixed β > 0. Then, we have
that Pr(h→=h|S) ∝ Pr(h)e−mβRS(h), where RS(h) is the empirical risk measured on S. As
m→∞, the exponential part of the posterior ensures that any hypothesis not having a risk
as low as RD(h?) will have a negligible weight. We will examine this ensemble method to
show that it is outperformed by the methods we propose in this paper.

6.3.2 Agnostic Bayes

Our main contribution is to propose a method for obtaining p(h? = h|S), to be used in our
ensemble decision E?(x). The core idea of our approach is to directly reason about h? instead
of assuming the existence in H of a data generating h→ and trying to infer it. Since the
observed losses in S suffice to distinguish h? from other hypotheses in H, we do not have to
commit to a particular model for the relationship between x and y, and can limit ourselves
to modeling the losses under each hypothesis.

Specifically, we propose to treat the risk rh
def= RD(h) of each hypothesis h as a random

variable, over which we will be defining a prior distribution. Let lh,i def= L (h (xi) , yi) be
the observed loss of hypothesis h for a sample (xi, yi) ∈ S. We also treat lh,i as random
variables, governed by a conditional distribution p(lh,i|rh). For example, in the zero-one
loss L(y, y′) = I[y 6= y′] case, a natural choice would be to treat the observed losses lh,i
as Bernoulli trials of parameter rh. Assuming a beta prior over rh, we could then perform
Bayesian inference in order to reason about the uncertainty over rh given the losses observed
from S.

In the case of ensemble learning where we have multiple competing hypotheses, the losses
lh,i are dependent across the different hypotheses h for the same example (xi, yi). Hence, we
need to model the losses llli def=

(
l1,i, l2,i, . . . , l|H|,i

)
for a given example jointly, given the joint

risk for all hypotheses r def=
(
r1, r2, . . . , r|H|

)
. Section 6.4 will discuss different joint priors p(r)

and observation models p(llli|r). For now, we just note that from p(llli|r), we can derive the
likelihood of the set of losses L def= {llli}mi=1 as p(L|r) = ∏m

i=1 p(llli|r) and, combined with our
prior p(r), perform Bayesian inference to obtain p(r|L) ∝ p(L|r)p(r).

After obtaining Pr(r|L), we can now compute the posterior probability that a given hypothesis
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h is the best hypothesis h? with the lowest risk among H

Pr (∀g ∈ H : rh ≤ rg | L)

= E
r∼Pr(· | L)

p (rh ≤ rg, ∀g 6= h|r)

= E
r∼Pr(· | L)

I (rh ≤ rg, ∀g 6= h) .

We propose to use this posterior as our ensemble posterior in Equation (6.1). Under this
model, L is a sufficient statistic for r and thus for h, i.e. p (h|S) = p (h|L). Hence, to sample
from p(h|S), it suffices to sample a joint risk r from Pr (r | L) and to search for the hypothesis
with the smallest risk. With repeated sampling, we can then approximately compute our
ensemble decision rule. When Y is continuous, this approximation can affect argmax

y∈Y
p(y? =

y|S, x). To address this issue, we consider a simple Gaussian model to smooth p(y? = y|S, x).
This yields a weighted average of the predictions: E?(x) = ∑

h∈H p(h? = h|S)h(x).

6.4 Priors Over the Joint Risk

In this section, we propose a few choices for the prior p(r) and observation model p(llli|r).
We also discuss how to perform inference for Pr(r|L) under different assumptions of the loss
function.

6.4.1 Dirichlet Distribution

We start with a proposal for the specific case of the zero-one loss. As described in Section 6.3,
the observations lh,i ∈ {0, 1} are correlated and put together in a vector llli ∈ {0, 1}d, where
d def= |H|. We propose to consider the collection of observations {llli}mi=1 as coming from a
categorical distribution of N def= 2d possible states (i.e. outcomes). Therefore, the counts of
observations k def= (k1, k2, . . . , kN ) ∈ NN come from a multinomial distribution of parameters
q and m, where q is the probability of observing each event and sums to 1. With these
assumptions, it is natural to use the Dirichlet distribution of parameter ααα as the model for
the prior over q. The posterior distribution Pr (q | k) is then a Dirichlet distribution of
parameter ααα + k. To convert the sample from Pr(q|L) to a sample from Pr(r|L), we define
the state matrix G ∈ {0, 1}d×N where the jth column corresponds to the binary representation
of j. Then, to obtain a sample from Pr(r|L), we sample q from Dir (ααα+ k) and use r = Gq.
Equivalently, we have Pr (r|L) = E q∼Dir(ααα+k) I [Gq = r].

Naively sampling from this posterior yields an algorithm with computational complexity of
O(d2d). However, using a neutral prior of the form ααα = α̃1N and the stick breaking rep-
resentation of the Dirichlet (see Lemma 3.1 of Sethuraman [1991]), we have the following
identity

θXααα + (1− θ)Xk = Xααα+k,
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where θ ∼ Beta(α̃N,m), Xααα ∼ Dir(ααα), Xk ∼ Dir(k), Xααα+k ∼ Dir(ααα + k). Since most values
in k are zeros, samples from Dir(k) can be obtained in O(m). Thus, we are left with the task
of sampling from Dir(ααα), which can be approximated efficiently using 10 · α̃N samples from
the stick breaking process Sethuraman [1991]. Since α̃N > m yields too much importance
to the prior, one can safely assume that α̃N ≤ m and obtain a sample from the prior with
computational complexity O(m) .

6.4.2 Bootstrap Inference

We point out that the Dirichlet posterior presented in Section 6.4.1 is a generalization of
Rubin’s Bayesian bootstrap [Rubin, 1981] and is equivalent in the limit α̃ → 0. Also, Rubin
showed that the Bayesian bootstrap is statistically tightly related to Efron’s bootstrap [Efron,
1979]. For these reasons, we also consider the bootstrap as a candidate for a simple and generic
method to sample from Pr(r|L). This is done by sampling with replacement a set {lll′i}

m
i=1 from

{llli}mi=1. To obtain r, we use rh ←
∑m
i=1

1
m l
′
h,i;∀h ∈ H.

6.4.3 t Distribution

In this section, we make the assumption that the variables llli are observations coming from
a multivariate normal distribution of dimensionality |H| def= d, whose mean parameter cor-
responds to the true risk r. While the normal assumption is generally not true, it can be
justified from the central limit theorem. As we will see, experiments in Section 6.7 show that
this assumption works well in practice even with the zero-one loss function, which is one of
the most extreme cases of non Gaussian samples.

Specifically, assuming that p(llli|r,Λ) is normal, the likelihood of L def= {lll}mi=1 is

Pr (L | r,Λ) ∝ |Λ|
m
2 e

(
−1

2
∑m

j=1(lllj−r)TΛ(lllj−r)
)
. (6.3)

We want to favor the use of priors over r and covariance matrix Λ−1 such that the posterior
p(r,Λ|L) is tractable. This can be achieved using the normal-Wishart distribution [DeGroot,
2005, p. 178]

Pr (r,Λ) = N
(
r
∣∣∣ r0, (κ0Λ)−1

)
W (Λ | T0, ν0) ,

where N and W are the normal and Wishart distributions respectively, r0 and T0 are the
mean and covariance prior, while κ0 and ν0 are parameters related to the confidence we have
in r0 and T0 respectively (with restrictions κ0 > 0 and ν0 > d − 1). Thanks to conjugacy,
after observing L, we have that the posterior p (r,Λ | L) is also a normal-Wishart distribution
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of parameters κm, νm, rm and Tm as follows:

κm = κ0 +m

νm = ν0 +m

rm = κ0r0 +mlll

κm
(6.4)

Tm = T0 +mS +m
κ0
κm

(
r0 − lll

) (
r0 − lll

)T

where lll def= 1
m

∑m
i=1 llli and S def= 1

m

∑m
i=1(llli−lll)(llli−lll)T. Since our goal is to obtain a posterior

distribution over r only, we have to marginalize out Λ from Pr (r,Λ | L). By doing so, we
obtain the multivariate Student’s t distribution with ν̃ def= νm−d+1 degrees of freedom [DeGroot,
2005, p. 179]

Pr (r | L) = t
(
r
∣∣∣ ν̃, rm, Tmκmν̃) . (6.5)

Samples from this multivariate t-distribution are done by sampling from the normal distri-
bution z∼N

(
0, Tm

κmν̃

)
, sampling from the chi-squared distribution ξ∼χ2(ν̃) and computing

rm+z
√

ν̃
ξ . This gives an overall computational complexity of O

(
d2(m+ k + d)

)
to obtain k

samples.

For setting the parameters r0, T0, κ0 and ν0 of the prior, we chose values that were as neutral
as possible and numerically stable: r0 = 0.5× 1d, T0 = 0.25× I, κ0 = 1 and ν0 = d.

6.4.4 Posterior Behavior with Correlated Hypotheses

One advantage of the agnostic Bayes posterior for constructing an ensemble is that it naturally
encourages diversity among the predictors, even in the presence of correlation between the
predictors in H. We illustrate this with a simple example, shown in Table 6.1, comparing an
agnostic Bayes ensemble with bootstrap inference (E?b ) and a Bayesian model averaging en-
semble with a loss-based noise model and flat prior over the hypotheses (E→). Table 6.1(top)
illustrates the case of three equally good but different hypotheses, based on three observed
losses for each predictor. We see that both E?b and E→ equally weight the three hypotheses,
as expected.

Now, in Table 6.1(bottom), we include intoH an additional hypothesis h4, which is identical to
h3. We then observe that E?b naturally maintains diversity within the ensemble, by reducing
the mass of the identical hypotheses h3 and h4, compared to E→ which still weights all
hypotheses equally. Diversity is usually considered to be beneficial when constructing an
ensemble of predictors Roy et al. [2011], motivating the use of agnostic Bayes for this task.
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Table 6.1: Illustration of the posteriors in an agnostic Bayes ensemble (E?b ) and in Bayesian
model averaging (E→). top: Uncorrelated predictors. bottom: Addition of a correlated
predictor.

lll1 lll2 lll3 Pr(h?|S) Pr(h→|S)
h1 1 0 0 0.33 0.33
h2 0 1 0 0.33 0.33
h3 0 0 1 0.33 0.33

↓

lll1 lll2 lll3 Pr(h?|S) Pr(h→|S)
h1 1 0 0 0.31 0.25
h2 0 1 0 0.31 0.25
h3 0 0 1 0.19 0.25
h4 0 0 1 0.19 0.25

6.5 Model Averaging for Trained Predictors

As mentioned in Section 6.3, one natural application for the inference of the best hypothesis
is model averaging of trained predictors. Namely, let Aγ be a learning algorithm with a
hyperparameter configuration γ ∈ Γ and let hγ = Aγ(T ) represent the classifier obtained
using a training set T ∼ Dn, disjoint from S. The set H contains all classifiers obtained from
each γ ∈ Γ, when Aγ is trained on T , i.e. H def= {hγ | γ ∈ Γ}. Finally, to obtain the posterior
Pr(h?γ = hγ |S), we rely on the set S. Experiments in Section 6.7 will show that this approach
significantly outperforms the usual method of selecting the hypothesis minimizing RS(hγ).

Unfortunately, this scenario requires that the hypotheses hγ be trained on a set of data T
separate from S, in a training/validation split fashion, wasting an opportunity to measure
the hypotheses performance on T as well. Our next step is thus to adapt our agnostic Bayes
approach to the k-fold cross-validation scenario, which more fully uses the available data.

6.5.1 Adapting to k-fold Cross-Validation

Let {V1, V2, . . . , Vk} be a partition of S, and let hγ,j def= Aγ (S \ Vj). Now, denote the loss of
model γ on the example (xi, yi) as l̃γ,i def= L (hγ,ji(xi), yi), where ji is the unique index j such
that (xi, yi) ∈ Vj . Finally, let l̃lli def=

(
l̃1,i, l̃2,i, . . . , l̃|Γ|,i

)
. Unlike {lll}mi=1, it is well known that

the set of k-fold generated losses {̃lll}mi=1 contains dependencies across the different examples
that are induced by the k-fold procedure Bengio and Grandvalet [2004]. Since the posteriors
described in Section 6.4 relied on independence across examples, we cannot simply ignore the
dependencies induced within this process and must adapt our approach.

Specifically, we make the simplifying assumption that these dependencies only affect the effec-
tive number of samples. Intuitively, since samples are correlated, there may not be as many
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as it seems and the estimation of Pr(r|L) may be overly confident. We thus propose to add
an extra parameter ρ, the effective sample size ratio, to compensate for these dependencies.
While this parameter requires calibration, we describe in Section 6.5.2 an efficient method for
automatically adjusting its value.

To include the effective sample size ratio in the methods described in Section 6.4, we will
effectively act as if the collection {lll}mi=1 had been generated by artificially replicating a set of
m original samples b times each, to give a new set of bm′ def= m samples. Thus, the effective
number of samples would be m′ = m/b. Now, supposing that we know ρ = m′/m, we want
to adapt the posterior’s parameters in such a way that the posterior’s distribution remains
the same, on average, as before the “corruption”.

Bootstrap: This is probably the simplest method to adapt. Out of the m observed events,
we sample with replacement m′ events instead, where m′ = dρme.

Dirichlet: In this case, each observed event is made to count for ρ instead of 1. After
observing m events, the vector of counts k′ def= (k′1, k′2, . . . , k′N ) will now sum to m′ instead of
m.

t-Distribution: In this case, we adapt the quantities described in Equation (6.4) as follows:
νm′ = ν0+m′, νm′ = ν0+m′, rm′ = κ0r0+m′lll

κm′
and Tm′ = T0+m′S+m′ κ0

κm′

(
r0 − lll

) (
r0 − lll

)T
.

6.5.2 Tuning Parameters

To adjust ρ, we treat it as a parameter and fit it by optimizing the resulting ensemble’s
performance on S, thereby measuring how well the ensemble’s weighting posterior can predict
each label yi in S from the hypotheses (h1,ji(xi), h2,ji(xi), .., h|Γ|,ji(xi)). We’ve found this to
work well in practice. This procedure is also akin to methods that learn a parameterized
linear combination of predictors by training on generated examples

S̃ def=
{(

(h1,ji
(xi), h2,ji

(xi), .., h|Γ|,ji
(xi)), yi

)}m
i=1.

The best ρ from a set of 20 values equally spaced from 0.1 to 0.8 is used. We use a similar
procedure to tune the prior parameter α̃ of the ensemble based on a Dirichlet prior.

6.6 Related Work

To overcome some mentioned weaknesses of Bayesian model averaging (such as the reliance on
the existence of a single data-generating hypothesis belonging to H), Kim and Ghahramani
[2012] proposed an alternative method for Bayesian combination of classifiers. They suppose
that, for a given x, the true label is at the origin of the behavior of each individual classifier.
Therefore, by modeling the dependencies between each classifier on a validation set, they can
perform inference of the original label. Unfortunately, it relies on a combination of MCMC
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and rejection sampling methods and the computational complexity of certain dependency
models grows exponentially with |H|. Thus, this approach is viable only for combining a
small set of classifiers. It also only tackles classification tasks and doesn’t take into account
the loss related to the task at hand, as we do here.

Alternatively, ensemble pruning is an important approach to ensemble methods. Zhang et al.
[2006] used semidefinite programming for solving a heuristic based on the covariance of the
predictors. Interestingly, the core of their idea is highly related to the covariance matrix used
in our t-distribution approach. Unfortunately, they can only address an approximation of
their heuristic and it is limited to the zero-one loss.

6.7 Experiments

We performed experiments to assess the performance of the agnostic Bayes ensemble approach
and compared with a few commonly used methods:

ArgMin (AMin): This method represents the common approach of selecting the model
hγ with the best estimated holdout risk rγ def= 1

m

∑m
i=1 lγ,i. When the minimum is not unique,

we select one at random.

SoftMin (SMin): We use the Gibbs distribution with parameter β to produce a posterior
distribution over the collection of hγ from rγ . i.e., Pr(hγ |S) ∝ e−βrγ and β is selected with the
method described in Section 6.5.2. This represents the alternative Bayesian model averaging
approach described in Section 6.3.1.

E?b , E
?
D, E

?
B, E

?
tE?b , E

?
D, E

?
B, E

?
tE?b , E

?
D, E

?
B, E

?
t : The different agnostic Bayes ensemble decision methods based on Equa-

tion (6.1) and using posterior inference based on the bootstrap, the Dirichlet distribution,
the Bayesian bootstrap and the t-distribution respectively. Effective sample size ratio ρ and
Dirichlet prior parameter α̃ are adjusted according to Section 6.5.2, while the t-distribution
prior parameters are fixed to the values specified in Section 6.4.3. We use 1000 samples from
Pr(r|L) to estimate Pr(h|S).

MetaSVM (MSVM): We use MetaSVM to represent the state of the art approach i.e.,
methods that learn a linear model over the set of models as a final predictor. This is done
by using the collection S̃ described in Section 6.5.2 as a training set for the linear SVM.
Traditional cross validation is used to select the best soft margin parameter over 20 candidates
values ranging from 10−3 to 100 on a logarithmic scale.

Meta Ridge Regression (MRR): When performing experiments on regression tasks, we
use ridge regression as a substitution for MetaSVM. The regularization parameter is selected
by the leave one out method over 30 candidates ranging from 10−4 to 104 on a logarithmic
scale.
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6.7.1 Comparing Learning Algorithms On Multiple Data sets

The different model selection methods presented in the previous section are generic and are
meant to work across different tasks. It is thus crucial that we test them on several data sets.
For that, we have to rely on methods that do not assume commensurability across tasks,
such as the sign test, the Wilcoxon signed rank test (WSR) [Demšar, 2006b] and the Poisson
binomial test (PB test) [Lacoste et al., 2012]. The PB test is a Bayesian analogue of the sign
test meant for comparing learning algorithms on a collection of tasks, called a context. More
precisely, it provides a probabilistic answer to the question “Does algorithm A have a higher
probability of producing a better predictor than algorithm B in the given context?”, denoted
by Pr (A � B | W), where W represents the context.

To build a substantial collection of data sets, we used the AYSU collection [Ulaş et al.,
2009] coming from the UCI and the Delve repositories and we added the MNIST data set.
We also converted the multiclass data sets to binary classification by either merging classes
or selecting pairs of classes. The resulting context contains 38 data sets. We have also
collected 22 regression data sets from the Louis Torgo collection.3 to perform experiments
using different loss functions.

The set Γ of models used in this experiment is a combination of SVMs, Artificial Neural
Networks (ANN), random forests, extra randomized trees Geurts et al. [2006] and gradient
tree boosting Friedman [2001] with several variants of hyperparameters. Considering the al-
gorithm name as a hyperparameter and a grid search for each algorithm, this yields a set of
692 hyperparameter configurations, all of which are evaluated using 10 folds cross validation.
For the experiments on regression data sets, we used a combination of Kernel Ridge Regres-
sion (KRR), Support Vector Regression (SVR), random forests, extra randomized trees and
gradient boosted regression, yielding a total of 480 hyperparameter configurations. Except
for a custom implementation of ANN and KRR, we used scikit-learn [Pedregosa et al., 2011]
for all other implementations. For more details on the choice of hyperparameters, we refer
the reader to the supplementary material.

6.7.2 Result Table Notation

Each conducted experiment compares the generalization performances of a set of M algo-
rithms on a set of N data sets. In order to evaluate if the observed differences are sta-
tistically significant, we use the pairwise PB test where each cell of the table represents
Pr (row � column). Since the table has a form of symmetry, we have grayed out redundant
information and removed the first column. In addition, we also highlight in blue the results
having p-values lower than 0.1 according to the one tail sign test. In general, we have observed
a strong correlation between the p-values of the sign test and the probabilities obtained from

3These data sets were obtained from the following source : http://www.dcc.fc.up.pt/~ltorgo/
Regression/DataSets.html
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the PB test. Note however that their values may differ and a highlighted cell does not imply
a strong PB probability, nor the converse. Finally, we added a column to each table which
reports the expected rank of each algorithm across the collection of data sets. The rank of
predictor hi = Ai(Sj) on test set Tj is defined as

Rankhi,Tj
def=

M∑
l=1

I
[
RTj (hl) ≤ RTj (hi)

]
.

Then, the expected rank is obtained from the empirical average E [Rank]hi
def= 1

N

∑N
j=1 Rankhi,Tj .

6.7.3 Comparison of Ensemble Decision Methods on Classification Tasks

Our first experiment compares the different methods and baselines in the setting where the
hypotheses have been trained and validated on a single split of the data set. In this scenario,
the training data generates the set of hypotheses while the validation data provides observa-
tions for building an ensemble. Finally, a testing set is used to report the performances. The
effective sample size ratio is fixed to 1 in this scenario.

Table 6.2: Comparison of the four proposed agnostic model averaging methods, in the single
training/validation split experiment (refer to Section 6.7.2 for notation).

E?DE
?
DE
?
D E?tE

?
tE
?
t E?bE

?
bE
?
b E?BE

?
BE
?
B E[rank]

E?DE
?
DE
?
D 0.500 0.509 0.524 0.652 2.43 /4
E?tE
?
tE
?
t 0.491 0.500 0.541 0.662 2.43 /4

E?bE
?
bE
?
b 0.476 0.459 0.500 0.640 2.46 /4

E?BE
?
BE
?
B 0.348 0.338 0.360 0.500 2.67 /4

From Table 6.2, there are no significant differences between our methods except for a slight
reduction in generalization performances for E?B, which corresponds to E?D with α̃ fixed to 0.
In this experiment, the only adjusted parameter is α̃ in the method E?D. This may explain
why it is ranked first according to the expected rank metric. To simplify the result tables,
further evaluations only includes E?b and E?t .

Table 6.3 exhibits a clear conclusion : The agnostic Bayes ensemble generalizes better than
AMin. Next, when comparing against MSVM and Softmin, while the results are note statis-
tically significant, the expected rank is in favor of both agnostic Bayes ensembles. Also, we
note that MSVM is not significantly better than AMin.

It is well known that k-fold cross-validation provides a better estimate of the generalization
performance of a learning algorithm than a single training/validation fold experiment. We
thus performed another comparison for this setting. In this scenario, the agnostic Bayes
method must now take into account the effective sample size ratio, as described in Sec-
tion 6.5.1. Selected values ranges from 0.1 to 1 and were mainly concentrated between 0.3
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Table 6.3: Comparison with the baseline models in the single training/validation split exper-
iment (refer to Section 6.7.2 for notation).

E?bE
?
bE
?
b MSvm SMin AMin E[rank]

E?tE
?
tE
?
t 0.541 0.613 0.787 0.911 2.63 /5

E?bE
?
bE
?
b 0.500 0.592 0.763 0.905 2.66 /5

MSvm 0.408 0.500 0.623 0.789 2.92 /5
SMin 0.237 0.377 0.500 0.759 3.19 /5
AMin 0.095 0.211 0.241 0.500 3.57 /5

and 0.6. The results are expressed in Table 6.4 and are similar to that of Table 6.3. Again,
agnostic Bayes is significantly better than Argmin while MSVM is not.

Table 6.4: Comparison with the baseline models in the cross-validation experiment (refer to
Section 6.7.2 for notation).

E?tE
?
tE
?
t MSvm SMin AMin E[rank]

E?bE
?
bE
?
b 0.507 0.575 0.707 0.840 2.70 /5

E?tE
?
tE
?
t 0.500 0.578 0.720 0.840 2.75 /5

MSvm 0.422 0.500 0.577 0.725 2.95 /5
SMin 0.280 0.423 0.500 0.682 3.12 /5
AMin 0.160 0.275 0.318 0.500 3.46 /5

6.7.4 Changing the Loss Function

The results from the last section clearly demonstrate the advantage of mixing models over
selecting a single one. While the agnostic Bayes methods outperform the baselines, we saw
that simply using a linear learning algorithm also exhibits good performances. But what
happens when the loss function changes? For example, we cannot use MetaSVM for combining
models on a regression task. We can adapt and use ridge regression but, since it minimizes
the quadratic loss, it may not perform well if our task is to minimize the expected absolute
difference loss (i.e., L(y, y′) = |y − y′|). In other words, to perform a linear combination
of models, we have to redesign the learning algorithm for every loss functions. Moreover,
some loss functions yield a non-convex optimization problem which requires some form of
approximation, e.g., SVM uses the hinge loss in place of the zero-one loss. In contrast, the
proposed agnostic Bayes approach is designed to work with any loss function.

To outline the independence to the loss function of the agnostic Bayes methods, we performed
experiments on regression tasks using both the quadratic loss and the absolute difference loss.
We compared against the same baseline methods except for MetaSVM which was replaced
by meta ridge regression (MRR) and its regularization parameter was selected by minimizing
the appropriate loss function during cross validation. Table 6.5 presents the results obtained
when using the quadratic loss function. While we worked with a totally different collection
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Table 6.5: Comparison with the baseline models on regression tasks for the quadratic loss
function (refer to Section 6.7.2 for notation).

E?tE
?
tE
?
t MRR SMin AMin E[rank]

E?bE
?
bE
?
b 0.839 0.547 0.929 0.992 2.22 /5

E?tE
?
tE
?
t 0.500 0.468 0.793 0.986 2.64 /5

MRR 0.532 0.500 0.554 0.809 2.88 /5
SMin 0.207 0.446 0.500 0.992 3.02 /5
AMin 0.014 0.191 0.008 0.500 4.23 /5

Table 6.6: Comparison with the baseline models on regression tasks for the absolute loss
function (refer to Section 6.7.2 for notation).

E?tE
?
tE
?
t SMin MRR AMin E[rank]

E?bE
?
bE
?
b 0.735 0.953 0.859 0.995 2.10 /5

E?tE
?
tE
?
t 0.500 0.932 0.821 0.995 2.37 /5

SMin 0.068 0.500 0.769 0.982 3.06 /5
MRR 0.179 0.231 0.500 0.485 3.39 /5
AMin 0.005 0.018 0.515 0.500 4.08 /5

of data sets, the conclusions that follow from this experiment are surprisingly similar to the
previous one. In this case, AMin is far down in ranking and the statistical significance of the
observed differences are even stronger. Also, MRR is still performing relatively well.

Now, let us see what happens when we change the loss function to the absolute difference loss.
Table 6.6 clearly shows an important degradation of MRR while the relative performances of
the other methods are almost unchanged. In addition, the agnostic Bayes approach is now
significantly better than the linear model. This clearly shows the importance of optimizing
the appropriate loss function. Thus, justifying the usage of the agnostic Bayes ensemble.

6.8 Conclusion

We proposed the agnostic Bayes framework, which can be used to tackle the ubiquitous
problem of model selection. This framework’s central idea is to model the relationship between
the hypotheses risks and observed empirical losses, without relying on assumptions about
the true data-generating model. For one, this idea provides a new way of reasoning about
machine learning problems. Also, the application to model selection has several desirable
characteristics.

Generalization: The generalization performance of the agnostic Bayes ensemble is signifi-
cantly better than just selecting the model minimizing the empirical expected loss. Also, our
expected rank is systematically higher than any other evaluated methods on all experiments.
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Flexibility: While most existing model selection algorithms are limited to a particular
loss function, the agnostic Bayes ensemble can be used with any loss function. Also, our
experiments showed how optimizing with the wrong loss function can be detrimental.

Speed: The bootstrap algorithm is simple to implement and has a linear computational
complexity in the size of the data set. When measuring the learning speed, we observed that
the bootstrap algorithm can be several thousand times faster than MetaSVM.
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Chapter 7

Third Paper Presentation

7.1 Details

Sequential Model-Based Ensemble Optimization
Alexandre Lacoste, Hugo Larochelle, François Laviolette, and Mario Marchand
In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, AUAI Press,
2014.

7.2 Early Version

An early version of this work was presented at an ICML workshop in June 2014, and can be
found in Appendix B.

Sequential Model-Based Ensemble Optimization
Alexandre Lacoste, Hugo Larochelle, François Laviolette, and Mario Marchand
In ICML AutoML Workshop, June 2014.

7.3 Context

A learning algorithm having dhp continuous hyperparameter variables will have an infinite un-
countable set Γ. To be computationally tractable, it is common to use a grid search approach,
where each variable is discretized by assigning a finite set of values to each hyperparameter
variable. This yields finite set Γ, which can now be explored through exhaustive search, but
the size of Γ still increases at an exponential rate with dhp making this approach impracti-
cal for more than 2 hyperparameters. Bergstra and Bengio [2012] improved this grid search
approach by simply using a random search over the hyperparameter space. While this cor-
responds to significant improvement, the desire to explore more exotic learning algorithms
requires an even more efficient approach.
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Recently, new optimization techniques were successfully applied to hyperparameter optimiza-
tion [Bergstra et al., 2011, Snoek et al., 2012]. This unleashed the potential to explore complex
hyperparameter spaces. In Bergstra et al. [2013], they perform optimization over hundreds of
hyperparameter variables. While this helps finding a more appropriate model, by selecting a
single one in such hyperparameter space, we definitely are exposed to significant overfitting.

7.4 Contributions

Model averaging is a good way to approach this overfitting challenge. However, most en-
semble methods available in the literature are designed for a finite and fixed hyperparameter
space. Luckily, we found that the agnostic Bayes approach can be adapted for this sequential
optimization procedure. In this work, we propose an efficient online algorithm for computing
the ensemble while iteratively searching the hyperparameter space. Since the training and
evaluation time for a given hyperparameter configuration is usually significantly longer than
the time required for building the ensemble, the computational cost is negligible. Experiments
on a testing data set shows that the risk of the ensemble decreases faster over iterations than
simply selecting the best predictor observed so far. Overall, this gives a fast and simple
algorithm that can be used with any loss function L.

7.5 Comments

Open source code implementing this agnostic Bayes algorithm is available at https://github.

com/recursix/spearmint-salad. A graphical interface showing the algorithm in action is
expressed in Figure 7.1.
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Figure 7.1: Screenshot of spearmint-salad, a python tool implementing the agnostic Bayes
ensemble algorithm. This 3D graph shows the validation performance for the three hyper-
parameters of support vector regression [Drucker et al., 1997] with a RBF kernel on the
Kinematics data set from the UCI repository [Bache and Lichman, 2013]. Each point rep-
resents an explored hyperparameter configuration, where the colors represent its validation
risk (red is low and blue is high). We clearly see that the optimization algorithm explored
significantly more in the region of interest.
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Chapter 8

Sequential Model-Based Ensemble
Optimization

8.1 Abstract

One of the most tedious tasks in the application of machine learning is model selection, i.e.
hyperparameter selection. Fortunately, recent progress has been made in the automation of
this process, through the use of sequential model-based optimization (SMBO) methods. This
can be used to optimize a cross-validation performance of a learning algorithm over the value
of its hyperparameters. However, it is well known that ensembles of learned models almost
consistently outperform a single model, even if properly selected. In this paper, we thus
propose an extension of SMBO methods that automatically constructs such ensembles. This
method builds on a recently proposed ensemble construction paradigm known as Agnostic
Bayesian learning. In experiments on 22 regression and 39 classification data sets, we confirm
the success of this proposed approach, which is able to outperform model selection with
SMBO.

8.2 Introduction

The automation of hyperparameter selection is an important step towards making the practice
of machine learning more approachable to the non-expert and increases its impact on data
reliant sciences. Significant progress has been made recently, with many methods reporting
success in tuning a large variety of algorithms Bergstra et al. [2011], Hutter et al. [2011], Snoek
et al. [2012], Thornton et al. [2013]. One successful general paradigm is known as Sequential
Model-Based Optimization (SMBO). It is based on a process that alternates between the
proposal of a new hyperparameter configuration to test and the update of an adaptive model
of the relationship between hyperparameter configurations and their holdout set performances.
Thus, as the model learns about this relationship, it increases its ability to suggest improved

75



hyperparameter configurations and gradually converges to the best solution.

While finding the single best model configuration is useful, better performance is often ob-
tained by, instead, combining several (good) models into an ensemble. This was best illus-
trated by the winning entry of the Netflix competition, which combined a variety of mod-
els [Bell et al., 2007]. Even if one concentrates on a single learning algorithm, combining
models produced by using different hyperparameters is also helpful. Intuitively, models with
comparable performances are still likely to generalize differently across the input space and
produce different patterns of errors. By averaging their predictions, we can hope that the
majority of models actually perform well on any given input and will move the ensemble to-
wards better predictions globally, by dominating the average. In other words, the averaging of
several comparable models reduces the variance of our predictor compared to each individual
in the ensemble, while not sacrificing too much in terms of bias.

However, constructing such ensembles is just as tedious as performing model selection and at
least as important in the successful deployment of machine-learning-based systems. Moreover,
unlike the model selection case for which SMBO can be used, no comparable automatic
ensemble construction methods have been developed thus far. The current methods of choice
remain trial and error or exhaustive grid search for exploring the space of models to combine,
followed by a selection or weighting strategy which is often an heuristic. One exception is the
work of Thornton et al. [2013], which can support the construction of ensembles, but only of
up to 5 models.

In this paper, we propose a method for leveraging the recent research on SMBO in order to
generate an ensemble of models, as opposed to the single best model. The proposed approach
builds on the Agnostic Bayes framework [Lacoste et al., 2014b], which provides a successful
strategy for weighting a predetermined and finite set of models (already trained) into an
ensemble. Using a successful SMBO method, we show how we can effectively generalize this
framework to the case of an infinite space of models (indexed by its hyperparameter space).
The resulting method is simple and highly efficient. Our experiments on 22 regression and
39 classification data sets confirm that it outperforms the regular SMBO model selection
method.

The paper develops as follows. First, we describe SMBO and its use for hyperparameter selec-
tion (Section 8.3). We follow with a description of the Agnostic Bayes framework and present
a bootstrap-based implementation of it (Section 8.4). Then, we describe the proposed algo-
rithm for automatically constructing an ensemble using SMBO (Section 8.5). Finally, related
work is discussed (Section 8.6) and the experimental comparisons are presented (Section 8.7).
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8.3 Hyperparameter Selection with SMBO

Let us first lay down the notation we will be using to describe the task of model selection for a
machine learning algorithm. In this setup, a task D corresponds to a probability distribution
over the input-output space X × Y. Given a set of examples S ∼ Dm (which will be our
holdout validation set), the objective is to find, among a set H, the best function h? : X → Y.
In general, H can be any set and we refer to a member as a predictor. In the context of
hyperparameter selection, H corresponds to the set of models trained on a training set T ∼ Dn

(disjoint from S), for different configurations of the learning algorithm’s hyperparameters γ.
Namely, let Aγ be the learning algorithm with a hyperparameter configuration γ ∈ Γ, we
will note hγ = Aγ(T ) the predictor obtained after training on T . The set H contains all
predictors obtained from each γ ∈ Γ when Aγ is trained on T , i.e. H def= {hγ | γ ∈ Γ}.

To assess the quality of a predictor, we use a loss function

L : Y × Y → R,

that quantifies the penalty incurred when hγ predicts hγ(x) while the true target is y. Then,
we can define the risk RD(hγ) as being the expected loss of hγ on task D, i.e. RD(hγ) def=

E
x,y∼D

[L (hγ(x), y)]. Finally, the best1 function is simply the one minimizing the risk, i.e.

h? def= argmin
hγ∈H

RD(hγ).

Here, estimating h? thus corresponds to hyperparameter selection.

For most of machine learning history, the state of the art in hyperparameter selection has
been testing a list of predefined configurations and selecting the best according to the loss
function L on some holdout set of examples S. When a learning algorithm has more than
one hyperparameter, a grid search is required, forcing |Γ| to grow exponentially with the
number of hyperparameters. In addition, the search may yield a suboptimal result when
the minimum lies outside of the grid or when there is not enough computational power for
an appropriate grid resolution. Recently, randomized search has been advocated as a better
replacement to grid search [Bergstra and Bengio, 2012]. While it tends to be superior to grid
search, it remains inefficient since its search is not informed by results of the sequence of
hyperparameters that are tested.

To address these limitations, there has been an increasing amount of work on automatic
hyperparameter optimization [Bergstra et al., 2011, Hutter et al., 2011, Snoek et al., 2012,
Thornton et al., 2013]. Most rely on an approach called sequential model based optimization
(SMBO). The idea consists in treating RS(hγ) def= f(γ) as a learnable function of γ, which we
can learn from the observations {(γi, RS(hγi))} collected during the hyperparameter selection
process.

1The best solution may not be unique but any of them are equally good.
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We must thus choose a model family for f . A common choice is a Gaussian process (GP)
representation, which allows us to represent our uncertainty about f , i.e. our uncertainty
about the value of f(γ∗) at any unobserved hyperparameter configuration γ∗. This uncertainty
can then be leveraged to determine an acquisition function that suggests the most promising
hyperparameter configuration to test next.

Namely, let functions µ : Γ → R and K : Γ × Γ → R be the mean and covariance kernel
functions of our GP over f . Let us also denote the set of the M previous evaluations as

R def= {(γi, RS (hγi))}
M
i=1 (8.1)

whereRS (hγi) is the empirical risk of hγi on set S, i.e. the holdout set error for hyperparameter
γ.

The GP assumption on f implies that the conditional distribution p(f(γ∗)|R) is Gaussian,
that is

p(f(γ∗)|R) = N (f(γ∗);µ(γ∗;R), σ2(γ∗;R),

µ(γ∗;R) def= µ(γ∗) + k>K−1(r− µ),

σ2(γ∗;R) def= K(γ∗, γ∗)− k>K−1k

where N (f(γ∗);µ(γ∗;R), σ2(γ∗;R) is the Gaussian density function with mean µ(γ∗;R) and
variance σ2(γ∗;R). We also have vectors

µ def= [µ(γ1), . . . , µ(γM )]>,

k def= [K(γ∗, γ1), . . . ,K(γ∗, γM )]>,

r def= [RS (hγ1) , . . . , RS (hγM )]>,

and matrix K is such that Kij = K(γi, γj).

There are several choices for the acquisition function. One that has been used with success
is the one maximizing the expected improvement:

EI(γ∗;R) def= E [max{rbest − f(γ∗), 0}|R] (8.2)

which can be shown to be equal to

σ2(γ∗;R) (d(γ∗;R)Φ(d(γ∗;R)) +N (d(γ∗;R), 0, 1)) (8.3)

where Φ is the cumulative distribution function of the standard normal and

rbest
def= min

i
RS (hγi) ,

d(γ∗;R) def= rbest − µ(γ∗;R)
σ(γ∗;R) .
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The acquisition function thus maximizes Equation 8.3 and returns its solution. This op-
timization can be performed by gradient ascent initialized at points distributed across the
hyperparameter space according to a Sobol sequence, in order to maximize the chance of
finding a global optima. One advantage of expected improvement is that it directly offers a
solution to the exploration-exploitation trade-off that hyperparameter selection faces.

An iteration of SMBO requires fitting the GP to the current set of tested hyperparameters
R (initially empty), invoking the acquisition function, running the learning algorithm with
the suggested hyperparameters and adding the result to R. This procedure is expressed in
Algorithm 1. Fitting the GP corresponds to learning the mean and covariance functions
hyperparameters to the collected data. This can be performed either by maximizing the
data’s marginal likelihood or defining priors over the hyperparameters and sampling from the
posterior using sampling (see Snoek et al. [2012] for more details).

Algorithm 1 SMBO Hyperparameter Optimization with GPs
R ← {}
for k ∈ {1, 2, . . . ,M} do
γ ← SMBO(R) {Fit GP and maximize EI}
hγ ← Aγ(T ) {Train with suggested γ}
R ← R∪ {(γ,RS(hγ))} {Add to collected data}

end for
γ∗ ← argmin

(γ,RS(hγ))∈R
RS(hγ)

return hγ∗

While SMBO hyperparameter optimization can produce very good predictors, it can also
suffer from overfitting on the validation set, especially for high-dimensional hyperparameter
spaces. This is in part why an ensemble of predictors are often preferable in practice. Properly
extending SMBO to the construction of ensembles is, however, not obvious. Here, we propose
one such successful extension, building on the framework of Agnostic Bayes learning, described
in the next section.

8.4 Agnostic Bayes

In this section, we offer a brief overview of the Agnostic Bayes learning paradigm presented
in Lacoste et al. [2014b] and serving as a basis for the algorithm we present in this paper.
Agnostic Bayes learning was used in Lacoste et al. [2014b] as a framework for successfully
constructing ensembles when the number of predictors in H (i.e. the potential hyperparameter
configurations Γ) was constrained to be finite (e.g. by restricting the space to a grid). In our
context, we can thus enumerate the possible hyperparameter configurations from γ1 to γ|Γ|.
This paper will generalize this approach to the infinite case later.

Agnostic Bayes learning attempts to directly address the problem of inferring what is the
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best function h? in H, according to the loss function L. It infers a posterior ph?(hγ |S), i.e.
a distribution over how likely each member of H is the best predictor. This is in contrast
with standard Bayesian learning, which implicitly assumes that H contains the true data-
generating model and infers a distribution for how likely each member of H has generated
the data (irrespective of what the loss L is). From ph?(hγ |S), by marginalizing h?, we obtain
a probabilistic estimate for the best prediction y? def= h?(x)

py?(y|x, S) =
∑
γ∈Γ

ph?(hγ |S) I[hγ(x) = y].

Finally, to commit to a final prediction, for a given x, we use the most probable answer2.
This yields the following ensemble decision rule

E?(x) def= argmax
y∈Y

py?(y|x, S). (8.4)

To estimate ph?(hγ |S), Agnostic Bayes learning uses the set of losses lγ,i def= L(hγ(xi), yi) of
each example (xi, yi) ∈ S as evidence for inference. In Lacoste et al. [2014b], a few different
approaches are proposed and analyzed. A general strategy is to assume a joint prior p(r)
over the risks rγ def= RD(hγ) of all possible hyperparameter configurations and choose a joint
observation p(lγ,i ∀γ ∈ Γ|r) for the losses. From Bayes rule, we obtain the posterior p(r|S)
from which we can compute

ph?(hγ |S) = Er
[
I[rγ < rγ′ ,∀γ′ 6= γ]|S

]
(8.5)

with a Monte Carlo estimate. This would result in repeatedly sampling from p(r|S) and
counting the number of times each γ has the smallest sampled risk rγ to estimate ph?(hγ |S).
Similarly, samples from ph?(hγ |S) could be obtained by sampling a risk vector r from p(r|S)
and returning the predictor hγ with the lowest sampled risk. The ensemble decision rule of
Equation 8.4 could then be implemented by repeatedly sampling from ph?(hγ |S) to construct
the ensemble of predictors and using their average as the ensemble’s prediction.

Among the methods explored in Lacoste et al. [2014b] to obtain samples from p(r|S), the
bootstrap approach stands out for its efficiency and simplicity. Namely, to obtain a sample
from p(r|S), we sample with replacement from S to obtain S′ and return the vector of empirical
risks

[RS′(hγ1), . . . , RS′(hγ|Γ|)]
>

as a sample. While bootstrap only serves as a “poor man’s” posterior, it can be shown to
be statistically related to a proper model with Dirichlet priors and its empirical performance
was shown to be equivalent [Lacoste et al., 2014b].

2As noted in Lacoste et al. [2014b], py? (y|x, S) does not correspond to the probability of observing y given
x and cannot be used with the optimal Bayes theory, thus justifying the usage of the most probable answer
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When the bootstrap method is used to obtain samples from ph?(hγ |S), the complete procedure
for generating each ensemble member can be summarized by

h̃? = argmin
γ∈Γ

RS′(hγ), (8.6)

where h̃? corresponds to a sample from ph?(hγ |S). In this work, we use SMBO to address the
optimization part. Thus, we can now extend to an uncountable set Γ.

This method can be seen as applying bagging on the validation set instead of the training
set. However, we stand by the Agnostic Bayes theory since it offers a strong theoretical
backbone to bagging as well as few refinements. Most importantly, the normal assumption
of Section 3.3 in Lacoste et al. [2014b] suggests that methods based on the covariance of the
predictions such as ensemble pruning [Zhang et al., 2006] and MinCq [Roy et al., 2011] are
simply different approximations of this idea. This connection allows us to be confident that
the fast and simple algorithm we propose in this paper is at least equivalent in generalization
performance to other state of the art ensemble methods. Finally, this claim is supported by
the strong experimental section of Lacoste et al. [2014b].

8.5 Agnostic Bayes Ensemble with SMBO

We now present our proposed method for automatically constructing an ensemble, without
having to restrict Γ (or, equivalently H) to a finite subset of hyperparameters.

As described in Section 8.4, to sample a predictor from the Agnostic Bayes bootstrap method,
it suffices to obtain a bootstrap S′ from S and solve the optimization problem of Equation 8.6.
In our context where H is possibly an infinite set of models trained on the training set T for
any hyperparameter configuration γ, Equation 8.6 corresponds in fact to hyperparameter
optimization where the holdout set is S′ instead of S.

This suggests a simple procedure for building an ensemble of N predictors according to
Agnostic Bayes i.e., that reflects our uncertainty about the true best model h?. We could
repeat the full SMBO hyperparameter optimization process N times, with different bootstrap
S′j , for j ∈ {1, 2, . . . , N}. However, for large ensembles, performing N runs of SMBO can be
computationally expensive, since each run would need to train its own sequence of models.

We can notice however that predictors are always trained on the same training set T , no
matter in which run of SMBO they were trained on. We propose a handy trick that exploits
this observation to greatly accelerate the construction of the ensemble by almost a factor of N .
Specifically, we propose to simultaneously optimize all N problems in a round-robin fashion.
Thus, we maintain N different histories of evaluation Rj , for j ∈ {1, 2, . . . , N} and when a
new predictor hγ = Aγ(T ) is obtained, we update all Rj with (γ,RS′j (hγ)). Notice that the
different histories Rj contain the empirical risks on different bootstrap holdout sets, but they
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are all updated at the cost of training only a single predictor. Also, to avoid recalculating
multiple times L(hγ(xi), yi), these values can be cached and shared in the computation of
each Rj . This leaves the task of updating all Rj insignificant compared to the computational
time usually required for training a predictor. This procedure is detailed in Algorithm 2.

Algorithm 2 Agnostic Bayes Ensemble with SMBO
for j ∈ {1, 2, . . . , N} do
Rj ← {}
S′j ← bootstrap(S)

end for

E ← {} {Will contain all trained predictors}
for k ∈ {1, 2, . . . ,M} do
v ← (k − 1) moduloN + 1
γ ← NEXT(Rv) {Selects the next γ to explore}
hγ ← Aγ(T )
E ← E ∪ {hγ}
for j ∈ {1, 2, . . . , N} do
Rj ← Rj ∪

{(
γ,RS′j (hγ)

)}
end for

end for

H′ ← {} {Will contain N selected predictors}
for j ∈ {1, 2, . . . , N} do
hj ← argmin

hγ∈E
RS′j (hγ)

H′ ← H′ ∪ {hj}
end for

ph?(hγ |S) = Uniform(H′)
return ph?(hγ |S)

By updating all Rj at the same time, we trick each SMBO run by updating its history with
points it did not suggest. This implies that the GP model behind each SMBO run will be able
to condition on more observations then it would if the runs had been performed in isolation.
This can only benefit the GPs and improve the quality of their suggestions.

While Algorithm 2 is sequential, it can be easily adapted to the parallelized version of SMBO
presented in Snoek et al. [2012]. Also, it can be extended to use cross validation, based on
the method developed in [Lacoste et al., 2014b].

In our experiments, we fix N = bM2 c. This maximizes the number of samples used to estimate
py?(y|x, S) while ensuring at least one SMBO step with a reasonably large history for each
bootstrap. When the prediction time on the test set is a concern, we suggest to choose
N ≈ 10. We observed that it was usually enough to obtain most of the generalization gain.
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Finally, since py?(y|x, S) is only estimated, finding the maximum, as requested in Equation 8.4,
requires some form of density estimation. In the case of classification, we simply use the most
probable class. However, in the regression case, we fit a normal distribution3. Thus, the
maximum coincide with the average prediction. For a more complex Y, such as in structured
output tasks, we recommend to use an appropriate density estimation and increase the number
of samples N .

8.6 Related Work

In the Bayesian learning literature, a common way of dealing with hyperparameters in prob-
abilistic predictors is to define hyperpriors and perform posterior inference to integrate them
out. This process often results in also constructing an ensemble of predictors with different
hyperparameters, sampled from the posterior. Powerful MCMC methods have been devel-
oped in order to accommodate for different types of hyperparameter spaces, including infinite
spaces.

However, this approach requires that the family of predictors in question be probabilistic
in order to apply Bayes rule. Moreover, even if the predictor family is probabilistic, the
construction of the ensemble will entirely ignore the nature of the loss function that determines
the measure of performance. The comparative advantage of the proposed Agnostic Bayes
SMBO approach is thus that it can be used for any predictor family (probabilistic or not)
and is loss-sensitive.

On the other hand, traditional ensemble methods such as Laviolette et al. [2011], Kim and
Ghahramani [2012], and Zhang et al. [2006] require a predefined set of models and are not
straightforward to adapt to an infinite set of models.

8.7 Experiments

We now compare the SMBO ensemble approach (ESMBO) to three alternative methods for
building a predictor from a machine learning algorithm with hyperparameters:

• A single model, whose hyperparameters were selected by hyperparameter optimization
with SMBO (SMBO).

• A single model, whose hyperparameters were selected by a randomized search (RS),
which in practice is often superior to grid search [Bergstra and Bengio, 2012].

• An Agnostic Bayes ensemble constructed over a randomly selected set of hyperparam-
eters (ERS).

3It is also possible to use a more elaborated method, such as kernel density estimation.
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Both ESMBO and SMBO used GP models of the holdout risk, with hyperparameters trained
to maximize the marginal likelihood. A constant was used for the mean function, while the
Matérn 5/2 kernel was used for the covariance function, with length scale parameters. The
GP’s parameters were obtained by maximizing the marginal likelihood and a different length
scale was used for each dimension4.

Each method is allowed to evaluate 150 hyperparameter configurations. To compare their
performances, we perform statistical tests on several different hyperparameter spaces over
two different collections of data sets.

8.7.1 Hyperparameter Spaces

Here, we describe the hyperparameter spaces of all learning algorithms we employ in our
experiments. Except for a custom implementation of the multilayer perceptron, we used
scikit-learn5 for the implementation of all other learning algorithms.

Support Vector Machine We explore the soft margin parameter C for values ranging
from 10−2 to 103 on a logarithmic scale. We use the RBF kernel K(x, x′) = eγ||x−x

′||22 and
explore values of γ ranging from 10−5 to 103 on a logarithmic scale.

Support Vector Regressor We also use the RBF kernel and we explore the same values
as for the Support Vector Machine. In addition, we explore the ε-tube parameter [Drucker
et al., 1997] for values ranging between 10−2 and 1 on a logarithmic scale.

Random Forest We fix the number of trees to 100 and we explore two different ways of
producing them: either the original Breiman [2001] method or the extremely randomized
trees method of Geurts et al. [2006]. We also explore the choice of bootstrapping or not the
training set before generating a tree. Finally, the ratio of randomly considered features at
each split for the construction of the trees is varied between 10−4 and 1 on a linear scale.

Gradient Boosted Classifier This is a tree-based algorithm using boosting [Friedman,
2001]. We fix the set of weak learners to 100 trees and take the maximum depth of each tree
to be in {1, 2, . . . , 15}. The learning rate ranges between 10−2 and 1 on a logarithmic scale.
Finally, the ratio of randomly considered features at each split for the construction of the
trees varies between 10−3 and 1 on a linear scale.

Gradient Boosted Regressor We use the same parameters as for Gradient Boosted Clas-
sifier except that we explore a convex combination of the least square loss function and the

4We used the implementation provided by spearmint: https://github.com/JasperSnoek/spearmint
5http://scikit-learn.org/
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least absolute deviation loss function. We also fix the ratio of considered features at each split
to 1.

Multilayer Perceptron We use a 2 hidden layers perceptron with tanh activation function
and a softmax function on the last layer. We minimize the negative log likelihood using the
L-BFGS algorithm. Thus there is no learning rate parameter. However, we used a different L2
regularizer weight for each of the 3 layers with values ranging from 10−5 to 100 on a logarithmic
scale. Also, the number of neurons on each layer can take values in {1, 2, . . . , 100}. In total,
this yields a 5 dimensional hyperparameter space.

8.7.2 Comparing Methods on Multiple Data Sets

To assess the generalization performances, we use a separate test set Stest, which is obtained
by randomly partitioning the original data set. More precisely, we use the ratios 0.4, 0.3, and
0.3 for T , S and Stest respectively6. However, testing on a single data set is insufficient to
testify the quality of a method that is meant to work across different tasks. Hence, we evaluate
our methods on several data sets using metrics that do not assume commensurability across
tasks [Demšar, 2006b]. The metrics of choice are thus the expected rank and the pairwise
winning frequency. Let Ai(Tj , Sj) be either one of our K = 4 model selection/ensemble
construction algorithms run on the jth data set, with training set Tj and validation set Sj .
When comparing K algorithms, the rank of (best or ensemble) predictor hi = Ai(Tj , Sj) on
test set Stest

j is defined as

Rankhi,Stest
def=

K∑
l=1

I
[
RStest

j
(hl) ≤ RStest

j
(hi)

]
.

Then, the expected rank of the ith method is obtained from the empirical average over the L
data sets i.e., E[R]i

def= 1
L

∑L
j=1 Rankhi,Stest

j
. When comparing algorithm Ai against algorithm

Al, the winning frequency7 of Ai is

ρi,l
def= 1

L

L∑
i=1

I[RStest
j

(hi) < RStest
j

(hl)]

In the case of the expected rank, lower is better and for the winning frequency, it is the
converse. Also, when K = 2, E[R]i = 1 + (1− ρi,l).

When the winning frequency ρi,l > 0.5, we say that method Ai is better than method Al.
However, to make sure that this is not the outcome of chance, we use statistical tests such
as the sign test and the Poisson Binomial test (PB test) [Lacoste et al., 2012]. The PB
test derives a posterior distribution over ρi,l and integrates the probability mass above 0.5,

6Is is also possible to perform cross-validation as mentioned in Lacoste et al. [2014b].
7We deal with ties by attributing 0.5 to each method except for the sign test where the sample is simply

discarded.
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Table 8.1: Significance Notation Used in Result Tables.
Meaning Symbol Pr(A � B) p-value

Lightly significant ◦ > 0.8 < 0.1
Significant • > 0.9 < 0.05

Highly significant • > 0.95 < 0.01

denoted as Pr(A � B). When Pr(A � B) > 0.9, we say that it is significant. Similarly for the
sign test, when the p-value is lower than 0.05, it corresponds to a significant result. To report
more information, we also use other thresholds for lightly significant and highly significant as
described in Table 8.1.

To build a substantial collection of data sets, we used the AYSU collection [Ulaş et al., 2009]
coming from the UCI and the Delve repositories and we added the MNIST data set. We also
converted the multiclass data sets to binary classification by either merging classes or selecting
pairs of classes. The resulting benchmark contains 39 data sets. We have also collected 22
regression data sets from the Louis Torgo collection8.

8.7.3 Table Notation

The result tables present the winning frequency for each pair of methods, where grayed out
values represent redundant information. As a complement, we also add the expected rank of
each method in the rightmost column and sort the table according to this metric. To report
the conclusion of the sign test and the PB test, we use different symbols to reflect different
level of significance. The exact notation is presented in Table 8.1. The first symbol reports
the result of the PB test and the second one, the sign test. For more stable results, we average
the values obtained during the last 15 iterations.

8.7.4 Analysis

Looking at the overall results over 7 different hyperparameter spaces in Table 8.2 and Ta-
ble 8.3, we observe that ESMBO is never significantly outperformed by any other method and
often outperforms the others. More precisely, it is either ranked first or tightly following ERS.
Looking more closely, we see that the cases where ESMBO does not significantly outperform
ERS concerns hyperparameter spaces of low complexity. For example, most hyperparameter
configurations of Random Forest yield good generalization performances. Thus, these cases
do not require an elaborate hyperparameter search method. On the other hand, when looking
at more challenging hyperparameter spaces such as Support Vector Regression and Multilayer
Perceptrons, we clearly see the benefits of combining SMBO with Agnostic Bayes.

8These data sets were obtained from the following source : http://www.dcc.fc.up.pt/~ltorgo/
Regression/DataSets.html

86

http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html


Table 8.2: Pairwise Win Frequency For the 3 Different Regression Hyperparameter Spaces
(Refer to Section 8.7.3 for the notation). Let us recall the acronyms. ESMBO: Ensemble of
SMBO, ERS: ensemble of random search, RS: Random Search.

Support Vector Regressor
ESMBO ERS SMBO RS E[rank]

ESMBO 0.50 •• 0.66 •• 0.82 •• 0.86 •• 1.66
ERS 0.34 •• 0.50 •• 0.50 •• 0.77 •• 2.38

SMBO 0.18 •• 0.50 •• 0.50 •• 0.64 ◦• 2.68
RS 0.14 •• 0.23 •• 0.36 •• 0.50 •• 3.27

Gradient Boosting Regressor
ERS ESMBO RS SMBO E[rank]

ERS 0.50 •• 0.52 •• 0.77 •• 0.86 •• 1.84
ESMBO 0.48 •• 0.50 •• 0.77 •• 0.91 •• 1.85

RS 0.23 •• 0.23 •• 0.50 •• 0.42 •• 3.12
SMBO 0.14 •• 0.09 •• 0.58 •• 0.50 •• 3.19

Random Forest
ESMBO ERS SMBO RS E[rank]

ESMBO 0.50 •• 0.53 •• 0.76 •• 0.91 •• 1.80
ERS 0.47 •• 0.50 •• 0.72 •• 1.00 •• 1.81

SMBO 0.24 •• 0.28 •• 0.50 •• 0.66 •• 2.82
RS 0.09 •• 0.00 •• 0.34 •• 0.50 •• 3.57

As described in Section 8.5, ESMBO is alternating between N different SMBO optimizations
and deviates from the natural sequence of SMBO. To see if this aspect of ESMBO can influ-
ence its convergence rate, we present a temporal analysis of the methods in Figure 8.1 and
Figure 8.2. The left columns depict Pr(A � B) for selected pairs of methods and the right
columns present the expected rank of each method over time.

A general analysis clearly shows that there is no significant degradation in terms of con-
vergence speed. In fact, we generally observe the opposite. More precisely, looking at
Pr(ESMBO � SMBO), the green curve of the left columns, it usually reaches a significantly
better state right at the beginning or within the first few iterations. A notable exception
to that trend occurs with the Multiplayer Perceptrons, where SMBO is significantly better
than ESMBO for a few iterations at the beginning. Then, it gets quickly outperformed by
ESMBO.

8.8 Conclusion

We described a successful method for automatically constructing ensembles without requiring
hand-selection of models or a grid search. The method can adapt the SMBO hyperparam-
eter optimization algorithm so that it can produce an ensemble instead of a single model.
Theoretically, the method is motivated by an Agnostic Bayesian paradigm which attempts to
construct ensembles that reflect the uncertainty over which a model actually has the smallest
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Table 8.3: Pairwise Win Frequency for the 4 Different Classification Hyperparameter Spaces
(Refer to Section 8.7.3 for the notation). Let us recall the acronyms. ESMBO: Ensemble of
SMBO, ERS: ensemble of random search, RS: Random Search.

Support Vector Machine
ESMBO RS SMBO ERS E[rank]

ESMBO 0.50 •• 0.54 •• 0.55 •• 0.56 •• 2.35
RS 0.46 •• 0.50 •• 0.51 •• 0.51 •• 2.52

SMBO 0.45 •• 0.49 •• 0.50 •• 0.53 •• 2.54
ERS 0.44 •• 0.49 •• 0.47 •• 0.50 •• 2.59

Gradient Boosting Classifier
ESMBO ERS RS SMBO E[rank]

ESMBO 0.50 •• 0.51 •• 0.59 •• 0.65 ◦• 2.25
ERS 0.49 •• 0.50 •• 0.59 •• 0.64 ◦◦ 2.28
RS 0.41 •• 0.41 •• 0.50 •• 0.55 •• 2.64

SMBO 0.35 •• 0.36 •• 0.45 •• 0.50 •• 2.83

Random Forest
ERS ESMBO RS SMBO E[rank]

ERS 0.50 •• 0.52 •• 0.60 •◦ 0.64 ◦• 2.24
ESMBO 0.48 •• 0.50 •• 0.60 •• 0.67 ◦• 2.25

RS 0.40 •• 0.40 •• 0.50 •• 0.57 •• 2.63
SMBO 0.36 •• 0.33 •• 0.43 •• 0.50 •• 2.89

Multilayer Perceptron
ESMBO SMBO ERS RS E[rank]

ESMBO 0.50 •• 0.57 ◦• 0.76 •• 0.75 •• 1.92
SMBO 0.43 •• 0.50 •• 0.68 ◦• 0.68 ◦• 2.21
ERS 0.24 •• 0.32 •• 0.50 •• 0.54 •• 2.91
RS 0.25 •• 0.32 •• 0.46 •• 0.50 •• 2.96

true risk. The resulting method is easy to implement and comes with no extra computational
cost at learning time. Its generalization performance and convergence speed are also dominant
according to experiments on 22 regression and 39 classification data sets.
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Figure 8.1: PB Probability and Expected Rank over Time for the 3 Regression Hyperparam-
eter Spaces.
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Figure 8.2: PB Probability and Expected Rank over Time for the 4 Classification Hyperpa-
rameter Spaces.

90



Chapter 9

Conclusion

In this thesis, we first exposed the basics of Bayesian modeling of machine learning and the
basics of the PAC-Bayesian theory. While both of these approaches are based on fundamen-
tally different assumptions, both agree that choosing a suitable prior and performing model
averaging are key ingredients to a better generalization performance. On the other hand,
the formulation of machine learning suggests that a learning algorithm must be as generic as
possible. Hence, the notion of prior must be as vague as possible. For this reason, this thesis
focuses on new model averaging approaches.

The Poisson Binomial Test

In this first work, we addressed the simplest case of the main element of the agnostic Bayes
approach

p(h? = h|S).

Since it is limited to the case where |H| = 2 and is used on the test set T , it can be written
p(RD(h) < RD(g)|T ), where h and g are elements of H. Also, by limiting it to the zero-one
loss function, we were able to obtain a closed form solution.

This posterior distribution is then used in a greater model to address the probability that
a learning algorithm is better than another one when evaluated on a collection of data sets
sampled from a context. This gave rise to a Bayesian statistical significance test called the
Poisson binomial test, and it is used to assess the reliability of all experiments in this thesis.

Agnostic Bayes

By generalizing p(RD(h) < RD(g)|S) to any loss function and a set H of size greater than
two, we were able to provide an estimation of the probability distribution p(h? = h|S) for any
supervised learning setup. Using this during the validation procedure allows us to integrate
out the uncertainty about which model is truly the best one. Extensive experiments confirm
the generalization gain of this approach.
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Sequential Model Based Ensemble Optimization

As opposed to most ensemble methods, the agnostic Bayes ensemble can be adapted to se-
quential optimization of hyperparameters. By doing so, we obtained a simple online algorithm
for building the ensemble at any iterations with a negligible computational cost.

9.1 Future Work

9.1.1 Agnostic Bayes Forest

In this work, the agnostic Bayes approach was applied only at the validation phase to perform
model averaging over the set of hyperparameters. This was mainly to demonstrate the effec-
tiveness of this approach. While we worked with a finite set H, some of the models developed
in Section 6.4 can be extended to infinite H. For example, to sample a predictor h̃ from the
posterior p(h? = h|S) with the bootstrap approach, it suffices to take a bootstrap S′ of the
training set S and minimize the empirical risk, i.e., h̃ = argmin

h∈H
RS′(h). We also believe that

the Dirichlet approach can be extended to the infinite set. This would give different avenues
for exploring an agnostic Bayes variant of the random forest algorithm Breiman [2001].

9.1.2 Extending the Poisson Binomial Test

Statistical significance tests are made to quantify the amount of uncertainty in an experiment.
Then, based on a threshold one can reject or accept a conclusion. Conventionally, these tests
are based on p-values and the threshold is 0.05 (yielding a success chance of 19/20). This kind
of approach is said to be frequentist and is much more common than a Bayesian test such
as the one presented in Section 4. The main culprit for the lack of popularity of Bayesian
tests is the notion of prior. It forces us to perform assumptions that would not be necessary
otherwise. In our case, we chose an impartial prior that maximizes the entropy to avoid any
bias. Despite this effort, the existence of the prior still bothers some scientists. Fortunately,
in the light of a recent publication [Benavoli et al., 2014], I found that the notion of imprecise
prior was developed to address this kind of issues. This notion simply states that one should
define a set of possible priors while never committing to any of them. Then, when comes
the time to compute an upper bound or a lower bound on the probability of some event, we
simply choose the prior that would select the safest bound.
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Appendix A

Model Averaging With Holdout
Estimation of the Posterior
Distribution

A.1 Abstract

The holdout estimation of the expected loss of one model is biased and noisy. Yet, practicians
often rely on it to select the model to be used for further predictions. Repeating the learning
phase with small variations of the training set reveals a variation on the selected model
which then induces an important variation of the final test performances. Thus, we propose
a small modification to the k-fold cross-validation that greatly enhances the generalization
performances of the final predictor. Instead of using the empirical average of the validation
losses to select a single model, we propose to use bootstrap to resample the validation losses
(without retraining). The variations in the selected models induce a posterior distribution
that is then used for model averaging. Comparing this novel approach to the classical cross-
validation on 38 data sets with a significance test shows that it has higher generalization
performance with probability over 0.9.

A.2 Introduction

In this paper, we work in the inductive learning paradigm where a task D corresponds to a
probability distribution over X × Y, the input-output space. Given a training set S ∼ Dm,
our objective is to find, among a set of hypothesis H, a function h? : X → Y that minimizes
the expected loss RD(h), where RD(h) def= E

x,y∼D
l (h(x), y) and where l : Y × Y → R is the

loss incurred when h predicts h(x) while the true output for x is y.

Since we only observe S ∼ Dm and not D, it is generally not possible to obtain h? with finite
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values ofm. For a given x, Bayes’ decision theory suggests to use y? = argmin
ŷ∈Y

E
y∼Pr(· | x,S)

l (ŷ, y),

where Pr (y | x, S) = E
h∼Pr(· | S)

Pr (y | h, x) and where Pr (h | S) is obtained using Bayes’ up-

date rule with a prior P (h) over H. Since |H| is either infinite or too large to be compu-
tationally tractable for most practical applications, the community of machine learning has
been concerned in finding efficient algorithms for some subset of H that exhibit certain math-
ematical properties. Let γ ∈ Γ be a tuple of hyperparameters describing a particular model.
Then, using model averaging, we can factorize the problem and combine all learning algo-
rithms of interest: Pr (y | x, S) = E

γ∼Pr(·|S)
E

h∼Pr(· | S,γ)
Pr (y | h, x) = E

γ∼Pr(·|S)
Pr (y | x, S, γ) ,

where Pr (γ|S) ∝ Pr (S|γ) Pr (γ). Note here that Pr (S|γ) = E
h∼Pr(·|γ)

P (S|h) and is known

as the marginal likelihood. Thus, we only need to specify a prior Pr(γ) over the different
learning algorithms we want to use and average over the different models produced. While
this approach is appealing and has been useful in several practical applications, it has a few
major drawbacks. For instance, many important learning algorithms do not have a Bayesian
flavor and do not provide a means for computing the marginal likelihood. When it does, it
often carries an unappealing computational burden. Also, as argued in Wahba [1990] Sec. 4.8,
this approach is often a victim of model mis-specification. Meaning that when P (γ) or P (h|γ)
doesn’t reflect the task’s structure, the final estimator is likely to be suboptimal. For these
reasons, it is common to use some form of cross-validation to be able to estimate the ex-
pected loss for each individual model and select the most promising one. However, most
cross-validation approaches yield a biased and noisy estimation of the expected loss on which
we rely to select a single model. To overcome these limitations, in this work, we combine
the advantages of both approaches by using holdout methods for estimating a model-free
posterior distribution Pr(γ|S) over the model space Γ.

A.3 Uncertainty in the Holdout Estimation of the Expected
Loss

A learning algorithm, parametrized by hyperparameters γ, can be seen as a function Aγ
that, given a training set S, returns a hypothesis h : X → Y. The goal of model selection
is to be able to find the model γ that will produce the classifier with the smallest expected
loss, L(γ), on task D using m training samples, where L(γ) def= E

S∼Dm
RD(Aγ(S)). The k-fold

cross-validation will estimate this average expected loss using L̂k(γ) def= 1
k

∑k
i=1RVi

(
Aγ

(
S̃i
))

,
where {V1, V2, . . . , Vk} is a partition of S, |Vi| ≈ m

k and S̃i def= S \ Vi. If Aγ is a stable learning
algorithm Devroye and Wagner [1979] and k−1

k ≈ 1, L̂k(γ) is a acceptable sapproximation
of L(γ). However, repeating the experiment while applying some small perturbations on S

yields an important variation on the choice of γ̂ def= argmin
γ∈Γ

L̂k(γ) and an even more important

variation on the expected loss of the final classifier on the test set RT
(
Aγ̂(S)

)
, where T ∼ Dn.
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This indicates that only selecting one γ̂ is suboptimal and that model averaging is likely to
improve generalization performances.

Let (xj , yj) be the jth sample of S and let hγ,j\ be the classifier that wasn’t trained using
the block Vi containing the jth sample. Then, we can define the collection of losses by
lγ,j

def= l(hγ,j\(xj), yj). With the Bayesian point of view, the collection of expected losses
LLL def= (L(γ1),L(γ2), . . . ) is a multivariate random variable and the observations are the lγ,j .
Thus, with a prior over lγ,j , we can obtain a posterior distribution Q for LLL over R|Γ|. With
this in mind, we can now define the posterior distribution Pr(γ|S) as being the probability
that γ is the best model among all candidates according to the posterior Q.

For example, let’s suppose that we only have two different models, Γ = {γ1, γ2} and let’s
suppose that Q is simply the product of two independent normal distributions where µ1 is
smaller than µ2. This means that the classical cross-validation approach would select γ1

since the average expected loss is smaller. However, when sampling (L(γ1),L(γ2)) ∼ Q, a
certain fraction of the samples will correspond to the event L(γ1) < L(γ2) while the rest
will correspond to the converse. Thus, the probability of these two events defines Pr(γ1|S)
and Pr(γ2|S) respectively. When more training data becomes available, the variance of both
distribution decreases. This allows to narrow down which one is actually the true best.
However, with a fixed amount of samples, we have to deal with the uncertainty and perform
model averaging.

A.3.1 Estimating Pr(γ|S)Pr(γ|S)Pr(γ|S) with Bootstrap

Algorithm 3 Estimate_Posterior( observations {lllj}mj=1, number_of_samples N )
Initialize pγ ← 0 ; ∀γ ∈ Γ
for i = 0 to N do
Sample with replacement a new set

{̃
lllj
}m
j=1

from the original set {lllj}mj=1

L̂(γ)←∑m
j=1

1
m l̃γ,j ; ∀γ ∈ Γ

γ? ← argmin
γ∈Γ

L̂(γ) {If there are more than one γ?, select one at random}

pγ? ← pγ? + 1
N

end for

Up to now, we’ve been supposing that the posterior distribution Q was given and that we
could sample from it. Unfortunately, there are several dependencies induced when training
and testing different models with the same data set. This prevents us from factorizing Q
into independent simple models, yielding a complex posterior to deal with. To simplify
this problem, we will use the bootstrap method Efron [1979] designed for evaluating the
uncertainty of an estimator. It has been showed by Rubin Rubin [1981] that the Bayesian
bootstrap, a smoothed version of Efron’s bootstrap, is equivalent to performing Bayesian
inference with a Dirichlet prior of parameter (0, 0, . . . , 0).
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Table A.1: Toy example showing the lγ,j values for |Γ| = 5 and m = 3 with the zero-one loss.
The last column gives P (γ|S) for each model.

lll1 lll2 lll3 P (γ|S)
γ1 1 0 0 0.136
γ2 1 0 0 0.136
γ3 1 0 0 0.136
γ4 0 1 0 0.295
γ5 0 0 1 0.295

For conveniences, in this work, we will use the original bootstrap scheme. However, we still
have to deal with the dependencies induced during cross validation. To do so, we consider
lllj

def=
(
lγ1,j , lγ2,j , . . . , lγ|Γ|,j

)
as being one sample. Thus, the collection of {lllj}mj=1 represents

the set of samples that we have for estimating Q. Unfortunately, there are still dependencies
among these samples and taking them into account presents a great challenge Bengio and
Grandvalet [2004]. To be able to move forward, we will suppose that this only affects the
effective sample size, i.e., we will suppose that we have m′ < m i.i.d. samples. Finally, to
estimate Pr(γ|S), we sample with replacement from {lllj}mj=1 to produce

{̃
lllj
}m′
j=1

and estimate

the proportion of the time that L̂(γ) has the smallest value, where L̂(γ) def= ∑m′
j=1

1
m′ l̃γ,j . This

procedure is expressed more formally in Algorithm 3.
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Figure A.1: Results showing the probability that the Predictor Weighting (PW) approach
is better than the Classical Cross Validation (CCV), using the Poisson binomial test. ρ def=
|S|/(|S|+ |T |) determines the amount of samples taken from the original data set to produce
the training set S. The rest is used for building the test set T .
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Appendix B

Sequential Model-Based Ensemble
Optimization, Early Work

B.1 Abstract

In this paper, we propose an extension of SMBO methods that automatically constructs
ensembles trained models. This method builds on a recently proposed ensemble construction
paradigm known as agnostic Bayesian learning. In experiments on 22 regression and 39
classification data sets, we confirm the success of this proposed approach, which is able to
outperform model selection with SMBO.

B.2 Introduction

The automation of hyperparameter selection is an important step towards making the practice
of machine learning more approachable to the non-expert and increasing its impact on data
reliant sciences. Significant progress has been made recently, with many methods reporting
success in tuning a large variety of algorithms [Bergstra et al., 2011, Hutter et al., 2011, Snoek
et al., 2012, Thornton et al., 2013]. One successful general paradigm is known as Sequential
Model-Based Optimization (SMBO). It is based on a process that alternates between the
proposal of a new hyperparameter configuration to test and the update of an adaptive model
of the relationship between hyperparameter configurations and their holdout set performances.
Thus, as the model learns about this relationship, it increases its ability to suggest improved
hyperparameter configurations and gradually converges to the best solution.

While finding the single best model configuration is useful, better performance is often ob-
tained by combining several (good) models into an ensemble. However, constructing such
ensembles is just as tedious as performing model selection and at least as important in the
successful deployment of machine-learning-based systems. Moreover, unlike the model selec-
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tion case for which SMBO can be used, little effort has been put on automating ensemble
construction thus far. One exception is the work of Thornton et al. [2013], which can support
the construction of ensembles, but only of up to 5 models.

In this paper, we propose a method for leveraging the recent research on SMBO in order to
generate a (possibly large) ensemble of models, as opposed to the single best model. The
proposed approach builds on the agnostic Bayes framework [Lacoste et al., 2014b], which
provides a successful strategy for weighting a predetermined and finite set of models (already
trained) into an ensemble. Using a successful SMBO method, we show how we can effectively
generalize this framework to the case of an infinite space of models (indexed by its hyper-
parameter space). The resulting method is simple and highly efficient. Our experiments on
22 regression and 39 classification data sets confirm that it outperforms the regular SMBO
model selection method.

B.3 Hyperparameter selection with SMBO

Let us first lay down the notation we will be using to describe the task of model selection for a
machine learning algorithm. In this setup, a task D corresponds to a probability distribution
over the input-output space X × Y. Given a set of examples S ∼ Dm (which will be our
holdout validation set), the objective is to find, among a set H, the best function h? : X → Y.
In general, H can be any set and we refer to a member as a predictor. In the context of
hyperparameter selection, H corresponds to the set of models trained on a training set T ∼ Dn

(disjoint from S), for different configurations of the learning algorithm’s hyperparameters γ.
Namely, let Aγ be the learning algorithm with a hyperparameter configuration γ ∈ Γ, we
will note hγ = Aγ(T ) the predictor obtained after training on T . The set H contains all
predictors obtained from each γ ∈ Γ when Aγ is trained on T , i.e. H def= {hγ | γ ∈ Γ}.

To assess the quality of a predictor, we use a loss function L : Y ×Y → R that quantifies the
penalty incurred when hγ predicts hγ(x) while the true target is y. Then, we can define the
risk RD(hγ) as being the expected loss of hγ on task D, i.e. RD(hγ) def= E

x,y∼D
[L (hγ(x), y)].

Finally, the best1 function is simply the one minimizing the risk, i.e. h? def= argmin
hγ∈H

RD(hγ).

Here, estimating h? thus corresponds to hyperparameter selection.

There has been an increasing amount of work on automatic hyperparameter optimization [Bergstra
et al., 2011, Hutter et al., 2011, Snoek et al., 2012, Thornton et al., 2013]. Most rely on an
approach called sequential model-based optimization (SMBO). The idea consists in treat-
ing RS(hγ) def= f(γ) as a learnable function of γ, which we can learn from the observations
{(γi, RS(hγi))} collected during the hyperparameter selection process. We must thus choose
a model family for f , and a common choice is a Gaussian process (GP) representation, which

1The best solution may not be unique but any of them are equally good.
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allows us to represent our uncertainty about f , i.e. our uncertainty about the value of f(γ∗)
at any unobserved hyperparameter configuration γ∗. This uncertainty can then be leveraged
to determine an acquisition function that suggests the most promising hyperparameter con-
figuration to test next. A popular acquisition function is the expected improvement, which
can be maximized by gradient ascent initialized at points distributed across the hyperpa-
rameter space according to a Sobol sequence (to maximize the chance of finding a global
optima). One advantage of expected improvement is that it directly offers a solution to the
exploration-exploitation trade-off that hyperparameter selection faces.

An iteration of SMBO requires fitting the GP to the current set of tested hyperparameters
R (initially empty), invoking the acquisition function, running the learning algorithm with
the suggested hyperparameters and adding the result to R. Fitting the GP corresponds to
learning the mean and covariance functions hyperparameters to the collected data. This can
be performed either by maximizing the data’s marginal likelihood or defining priors over the
hyperparameters and sampling from the posterior (see Snoek et al. [2012] for more details).

While SMBO hyperparameter optimization can produce very good predictors, it can also
suffer from overfitting on the validation set, especially for high-dimensional hyperparameter
spaces. This is in part why an ensemble of predictors are often preferable in practice. Properly
extending SMBO to the construction of ensembles is, however, not obvious. Here, we propose
one such successful extension, building on the framework of Agnostic Bayes learning, described
in the next section.

B.4 Agnostic Bayes

In this section, we offer a brief overview of the Agnostic Bayes learning paradigm presented
in Lacoste et al. [2014b], where it was used to construct ensembles for finite sets H. In this
paper, we will thus later generalize this approach to the infinite case.

Agnostic Bayes learning attempts to directly address the problem of inferring what is the
best function h? in H, according to the loss function L. It infers a posterior ph?(hγ |S), i.e.
a distribution over how likely each member of H is the best predictor. This is in contrast
with standard Bayesian learning, which implicitly assumes that H contains the true data-
generating model and infers a distribution for how likely each member of H has generated
the data (irrespective of what the loss L is). From ph?(hγ |S), by marginalizing, we obtain a
probabilistic estimate for the best prediction y? def= h?(x)

py?(y|x, S) =
∑
γ∈Γ

ph?(hγ |S) I[hγ(x) = y].

Finally, to commit to a final prediction, for a given x, we use the most probable answer2.
2As noted in Lacoste et al. [2014b], py? (y|x, S) does not corresponds to the probability of observing y given

x and cannot be used with the optimal Bayes theory, thus justifying the usage of the most probable answer
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This yields the following ensemble decision rule

E?(x) def= argmax
y∈Y

py?(y|x, S). (B.1)

To estimate ph?(hγ |S), Agnostic Bayes learning uses the set of losses lγ,i def= L(hγ(xi), yi) of
each example (xi, yi) ∈ S as evidence for inference. In Lacoste et al. [2014b], a few different
approaches are proposed and analyzed. A general strategy is to assume a joint prior p(r)
over the risks rγ def= RD(hγ) of all possible hyperparameter configurations and choose a joint
observation p(lγ,i ∀γ ∈ Γ|r) for the losses. From Bayes rule, we obtain the posterior p(r|S)
from which we can compute

ph?(hγ |S) = Er
[
I[rγ < rγ′ ,∀γ′ 6= γ]|S

]
(B.2)

with a Monte Carlo estimate. This would result in repeatedly sampling from p(r|S) and
counting the number of times each γ has the smallest sampled risk rγ to estimate ph?(hγ |S).
Similarly, samples from ph?(hγ |S) could be obtained by sampling a risk vector r from p(r|S)
and returning the predictor hγ with the lowest sampled risk. The ensemble decision rule of
Equation B.1 could then be implemented by repeatedly sampling from ph?(hγ |S) to construct
the ensemble of predictors and using their average as the ensemble’s prediction.

Among the methods explored in Lacoste et al. [2014b] to obtain samples from p(r|S), the
bootstrap approach stands out for its efficiency and simplicity. Namely, to obtain a sample
from p(r|S), we sample with replacement from S to obtain S′ and return the vector of empirical
risks [RS′(hγ1), . . . , RS′(hγ|Γ|)]> as a sample. While bootstrap only serves as a “poor man’s”
posterior, it can be shown to be statistically related to a proper model with Dirichlet priors
and its empirical performance was shown to be equivalent [Lacoste et al., 2014b].

When the bootstrap method is used to obtain samples from ph?(hγ |S), the complete procedure
for generating each ensemble member can be summarized by

h̃? = argmin
γ∈Γ

RS′(hγ), (B.3)

where h̃? corresponds to a sample from ph?(hγ |S).

B.5 Agnostic Bayes ensemble with SMBO

We now present our proposed method for automatically constructing an ensemble, without
having to restrict Γ (or, equivalently H) to a finite subset of hyperparameters.

As described in Section B.4, to sample a predictor from the Agnostic Bayes bootstrap method,
it suffices to obtain a bootstrap S′ from S and solve the optimization problem of Equation B.3.
In our context where H is possibly an infinite set of models trained on the training set T for
any hyperparameter configuration γ, Equation B.3 corresponds in fact to hyperparameter
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optimization where the holdout set is S′ instead of S. We could thus perform this step using
SMBO.

This suggests a simple procedure for building an ensemble of N predictors according to
agnostic Bayes i.e., that reflects our uncertainty about the true best model h?. We could
repeat the full SMBO hyperparameter optimization process N times, with different bootstrap
S′j , for j ∈ {1, 2, . . . , N}, each process carrying its own history Rj of tested hyperparameters.
However, for large ensembles, performing N runs of SMBO can be computationally expensive,
since each run would need to train its own sequence of models.

We can notice however that predictors are always trained on the same training set T , no
matter in which run of SMBO they were trained on. We propose a handy trick that exploits
this observation to greatly accelerate the construction of the ensemble by almost a factor
of N . Specifically, we propose to simultaneously optimize all N problems in a round-robin
fashion. Thus, while we maintain the N different histories of evaluation Rj , when a new
predictor hγ = Aγ(T ) is obtained, we update all Rj with (γ,RS′j (hγ)). Notice that the
different histories Rj contain the empirical risks on different bootstrap holdout sets, but they
are all updated at the cost of training only a single predictor. Also, to avoid recalculating
multiple times L(hγ(xi), yi), these values can be cached and shared in the computation of
each Rj . This leaves the task of updating all Rj insignificant compared to the computational
time usually required for training a predictor. For more details and a pseudocode on this
procedure, see Lacoste et al. [2014a].

By updating all Rj at the same time, we trick each SMBO run by updating its history with
points it did not suggest. This implies that the GP model behind each SMBO run will be able
to condition on more observations then it would if the runs had been performed in isolation.
This can only benefit the GPs and improve the quality of their suggestions. Let M be the
total number of hyperparameter configurations we are willing to test, in our experiments,
we fix N = bM2 c. This maximizes the number of samples used to estimate py?(y|x, S) while
ensuring at least one SMBO step with a reasonably large history for each bootstrap.

B.6 Experiments

We now compare the SMBO ensemble approach (ESMBO) to three alternative methods for
building a predictor from a machine learning algorithm with hyperparameters:

• A single model, whose hyperparameters were selected by hyperparameter optimization
with SMBO (SMBO).

• A single model, whose hyperparameters were selected by a randomized search (RS),
which in practice is often superior to grid search [Bergstra and Bengio, 2012].
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• An Agnostic Bayes ensemble constructed from a randomly selected set of hyperparam-
eters (ERS).

Both ESMBO and SMBO used GP models of the holdout risk, with hyperparameters trained
to maximize the marginal likelihood. A constant was used for the mean function, while the
Matérn 5/2 kernel was used for the covariance function, with length scale parameters. The
GP’s parameters were obtained by maximizing the marginal likelihood and a different length
scale was used for each dimension3.

Each method is allowed to evaluate 150 hyperparameter configurations. To compare their
performances, we perform statistical tests on 7 different hyperparameter spaces (i.e. different
learning algorihtm) over two different collections of data sets.

The different methods presented in this paper are generic and are meant to work across
different tasks. It is thus crucial that we evaluate them on several data sets using metrics that
do not assume commensurability across tasks [Demšar, 2006b]. The metrics of choice are thus
the expected rank and the pairwise winning frequency. When the winning frequency ρi,l > 0.5,
we say that method Ai is better than method Al. However, to make sure that this is not
the outcome of chance, we use statistical tests such as the sign test and the Poisson Binomial
test (PB test) [Lacoste et al., 2012]. The PB test derives a posterior distribution over ρi,l and
integrates the probability mass above 0.5, denoted as Pr(A � B). When Pr(A � B) > 0.8,
we say that the result is significant and when Pr(A � B) > 0.9, we say that it is highly
significant. Similarly for the sign test, when the p-value is lower than 0.1, it is significant and
when lower than 0.05, it is highly significant.

To build a substantial collection of data sets, we used the AYSU collection [Ulaş et al., 2009]
coming from the UCI and the Delve repositories and we added the MNIST data set. The
resulting benchmark contains 39 classification data sets. We have also collected 22 regression
data sets from the Louis Torgo collection4.

Looking at the overall results over 7 different hyperparameter spaces in Table B.15, we observe
that ESMBO is never significantly outperformed by any other method and often outperforms
the others. More precisely, it is either ranked first or tightly following ERS. Looking more
closely, we see that the cases where ESMBO does not significantly outperform ERS concerns
hyperparameter spaces of low complexity. For example, most hyperparameter configurations

3We used the implementation provided by spearmint: https://github.com/JasperSnoek/spearmint
4These data sets were obtained from the following source : http://www.dcc.fc.up.pt/~ltorgo/

Regression/DataSets.html
5The result tables present the winning frequency for each pair of methods, where grayed out values represent

redundant information. As a complement, we also add the expected rank of each method in the rightmost
column and sort the table according to this metric. To report the conclusion of the Sign test and the PB test,
we use colored dots, where orange means significant and green means highly significant. The first dot reports
the result of the PB test and the second one, the Sign test. For more stable results, we average the values
obtained during the last 15 iterations.
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Table B.1: Pairwise win frequency for the 3 different regression hyperparameter spaces (left)
and 4 different classification hyperparameter spaces (right).

Support Vector Regressor
ESMBO ERS SMBO RS E[R]

ESMBO 0.50 •• 0.66 •• 0.82 •• 0.86 •• 1.66
ERS 0.34 •• 0.50 •• 0.50 •• 0.77 •• 2.38

SMBO 0.18 •• 0.50 •• 0.50 •• 0.64 ◦• 2.68
RS 0.14 •• 0.23 •• 0.36 •• 0.50 •• 3.27

Gradient Boosting Regressor

ERS ESMBO RS SMBO E[R]
ERS 0.50 •• 0.52 •• 0.77 •• 0.86 •• 1.84

ESMBO 0.48 •• 0.50 •• 0.77 •• 0.91 •• 1.85
RS 0.23 •• 0.23 •• 0.50 •• 0.42 •• 3.12

SMBO 0.14 •• 0.09 •• 0.58 •• 0.50 •• 3.19

Random Forest
ESMBO ERS SMBO RS E[R]

ESMBO 0.50 •• 0.53 •• 0.76 •• 0.91 •• 1.80
ERS 0.47 •• 0.50 •• 0.72 •• 1.00 •• 1.81

SMBO 0.24 •• 0.28 •• 0.50 •• 0.66 •• 2.82
RS 0.09 •• 0.00 •• 0.34 •• 0.50 •• 3.57

Gradient Boosting Classifier
ESMBO ERS RS SMBO E[R]

ESMBO 0.50 •• 0.51 •• 0.59 •• 0.65 ◦• 2.25
ERS 0.49 •• 0.50 •• 0.59 •• 0.64 ◦◦ 2.28

RS 0.41 •• 0.41 •• 0.50 •• 0.55 •• 2.64
SMBO 0.35 •• 0.36 •• 0.45 •• 0.50 •• 2.83

Random Forest
ERS ESMBO RS SMBO E[R]

ERS 0.50 •• 0.52 •• 0.60 •◦ 0.64 ◦• 2.24
ESMBO 0.48 •• 0.50 •• 0.60 •• 0.67 ◦• 2.25

RS 0.40 •• 0.40 •• 0.50 •• 0.57 •• 2.63
SMBO 0.36 •• 0.33 •• 0.43 •• 0.50 •• 2.89

Multilayer Perceptron
ESMBO SMBO ERS RS E[R]

ESMBO 0.50 •• 0.57 ◦• 0.76 •• 0.75 •• 1.92
SMBO 0.43 •• 0.50 •• 0.68 ◦• 0.68 ◦• 2.21

ERS 0.24 •• 0.32 •• 0.50 •• 0.54 •• 2.91
RS 0.25 •• 0.32 •• 0.46 •• 0.50 •• 2.96

of Random Forest yield good generalization performances. Thus, these cases do not require an
elaborate hyperparameter search method. On the other hand, when looking at more challeng-
ing hyperparameter spaces such as Support Vector Regression and Multilayer Perceptrons,
we clearly see the benefits of combining SMBO with Agnostic Bayes.

B.7 Conclusion

We described a successful method for automatically constructing ensembles without requiring
hand-selection of models or a grid search. Its generalization performance on 22 regression and
39 classification data sets was shown to be competitive. The method can adapt the SMBO
hyperparameter optimization algorithm so that it can produce an ensemble instead of a single
model. Theoretically, the method is motivated by an Agnostic Bayesian paradigm which
attempts to construct ensembles that reflect the uncertainty over which a model actually has
the smallest true risk. The resulting method is easy to implement and comes with no extra
computational cost at learning time.
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