5 research outputs found

    A Kernel to Exploit Informative Missingness in Multivariate Time Series from EHRs

    Get PDF
    A large fraction of the electronic health records (EHRs) consists of clinical measurements collected over time, such as lab tests and vital signs, which provide important information about a patient's health status. These sequences of clinical measurements are naturally represented as time series, characterized by multiple variables and large amounts of missing data, which complicate the analysis. In this work, we propose a novel kernel which is capable of exploiting both the information from the observed values as well the information hidden in the missing patterns in multivariate time series (MTS) originating e.g. from EHRs. The kernel, called TCKIM_{IM}, is designed using an ensemble learning strategy in which the base models are novel mixed mode Bayesian mixture models which can effectively exploit informative missingness without having to resort to imputation methods. Moreover, the ensemble approach ensures robustness to hyperparameters and therefore TCKIM_{IM} is particularly well suited if there is a lack of labels - a known challenge in medical applications. Experiments on three real-world clinical datasets demonstrate the effectiveness of the proposed kernel.Comment: 2020 International Workshop on Health Intelligence, AAAI-20. arXiv admin note: text overlap with arXiv:1907.0525

    Noisy multi-label semi-supervised dimensionality reduction

    Get PDF
    Noisy labeled data represent a rich source of information that often are easily accessible and cheap to obtain, but label noise might also have many negative consequences if not accounted for. How to fully utilize noisy labels has been studied extensively within the framework of standard supervised machine learning over a period of several decades. However, very little research has been conducted on solving the challenge posed by noisy labels in non-standard settings. This includes situations where only a fraction of the samples are labeled (semi-supervised) and each high-dimensional sample is associated with multiple labels. In this work, we present a novel semi-supervised and multi-label dimensionality reduction method that effectively utilizes information from both noisy multi-labels and unlabeled data. With the proposed Noisy multi-label semi-supervised dimensionality reduction (NMLSDR) method, the noisy multi-labels are denoised and unlabeled data are labeled simultaneously via a specially designed label propagation algorithm. NMLSDR then learns a projection matrix for reducing the dimensionality by maximizing the dependence between the enlarged and denoised multi-label space and the features in the projected space. Extensive experiments on synthetic data, benchmark datasets, as well as a real-world case study, demonstrate the effectiveness of the proposed algorithm and show that it outperforms state-of-the-art multi-label feature extraction algorithms.Comment: 38 page

    Using anchors from free text in electronic health records to diagnose postoperative delirium

    Get PDF
    Objectives: Postoperative delirium is a common complication after major surgery among the elderly. Despite its potentially serious consequences, the complication often goes undetected and undiagnosed. In order to provide diagnosis support one could potentially exploit the information hidden in free text documents from electronic health records using data-driven clinical decision support tools. However, these tools depend on labeled training data and can be both time consuming and expensive to create. Methods: The recent learning with anchors framework resolves this problem by transforming key observations (anchors) into labels. This is a promising framework, but it is heavily reliant on clinicians knowledge for specifying good anchor choices in order to perform well. In this paper we propose a novel method for specifying anchors from free text documents, following an exploratory data analysis approach based on clustering and data visualization techniques. We investigate the use of the new framework as a way to detect postoperative delirium. Results: By applying the proposed method to medical data gathered from a Norwegian university hospital, we increase the area under the precision-recall curve from 0.51 to 0.96 compared to baselines. Conclusions: The proposed approach can be used as a framework for clinical decision support for postoperative deliriu
    corecore